화학공학소재연구정보센터
Applied Energy, Vol.90, No.1, 167-174, 2012
Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption
The membrane wetting by amine absorbents results in performance deterioration of membrane gas absorption system for CO(2) post-combustion capture. To solve this problem, in this study, the polypropylene membrane fiber was modified by depositing a rough layer on the surface to improve its hydrophobicity. Weighing the coating homogeneity, hydrophobicity and modification process efficiency, the mixture of cyclohexanone and MEK system was considered as the best non-solvent. The contact angle increased dramatically from 122 to 158 by the modification, thereby obtaining superhydrophobic membrane surface. The membrane-absorbent interaction results demonstrated that the modification treatment effectively enhanced the stability and maintained the superhydrophobicity of fibers contacting with the absorbent. In addition, continuous CO(2) absorption experiments for up to 20 days were carried out in untreated and modified polypropylene hollow fiber membrane contactors, using 1 mol L(-1) MEA solution as the absorbent. The long-term system operation results indicated that, even though additional mass transfer resistance was introduced by the surface coating, the modified polypropylene hollow fiber membrane contactor was still technically feasible for CO(2) capture from the power stations. (C) 2010 Elsevier Ltd. All rights reserved.