화학공학소재연구정보센터
Biomacromolecules, Vol.12, No.11, 3962-3969, 2011
Carbohydrate-Functionalized Chitosan Fiber for Influenza Virus Capture
The high transmissibility and genetic variability of the influenza virus have made the design of effective approaches to control the infection particularly challenging. The virus surface hemagglutinin (HA) protein is responsible for the viral attachment to the host cell surface via the binding with its glycoligands, such as sialyllactose (SL), and thereby is an attractive target for antiviral designs. Herein we present the facile construction and development of two SL-incorporated chitosan-based materials, either as a water-soluble polymer or as a functional fiber, to demonstrate their abilities for viral adhesion inhibition and decontamination. The syntheses were accomplished by grafting a lactoside bearing an aldehyde-functionalized aglycone to the amino groups of chitosan or chitosan fiber followed by the enzymatic sialylation with sialyltransferase. The obtained water-soluble SL-chitosan conjugate bound HA with high affinity and inhibited effectively the viral attachment to host erythrocytes. Moreover, the SL-functionalized chitosan fiber efficiently removed the virus from an aqueous medium. The results collectively demonstrate that these potential new materials may function as the virus adsorbents for prevention and control of,influenza. Importantly, these materials represent an appealing approach for presenting a protein ligand on a chitosan backbone, which is a versatile molecular platform for biofunctionalization and, thereby, can be used for not only antiviral designs, but also extensive medical development such as diagnosis and drug delivery.