화학공학소재연구정보센터
Applied Surface Science, Vol.258, No.8, 4054-4062, 2012
Preparation and characterization of montmorillonite modified by phosphorus-nitrogen containing quaternary ammonium salts
A novel class of phosphorous-nitrogen containing quaternary ammonium salts (PNQAS) were synthesized and used as modifiers for sodium montmorillonite (Na-MMT). Montmorillonites modified by PNQAS (PNQAS-MMT) were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dispersibility measurement and thermogravimetric analysis (TGA). The results show that the PNQAS have been intercalated into the montmorillonite layers successfully and the basal spacing of PNQAS-MMT is 1.70-2.65 nm. The XRD results show that the basal spacing of PNQAS-MMT reaches a maximum when PNQAS/CEC molar ratio is above 1.2. The increase of chain length of PNQAS is beneficial to expand the interlayer space of the MMT. The TEM and dispersibility measurement results show that PNQAS-MMT have stronger hydrophobicity and better dispersion than Na-MMT. The TGA results reveal that the thermal stability for PNQAS-MMT is affected by the structure and composition of intercalated PNQAS cations. The T-inital of PNQAS-MMT is between 286 degrees C and 385 degrees C, which can be applied to the modification of the polymer as a halogen-free flame retardant. (C) 2012 Elsevier B.V. All rights reserved.