화학공학소재연구정보센터
Applied Surface Science, Vol.258, No.3, 1038-1044, 2011
Improving protein resistance of alpha-Al2O3 membranes by modification with POEGMA brushes
A kind of protein-resistant ceramic membrane is prepared by grafting poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes onto the surfaces and pore walls of alpha-Al2O3 membrane (AM) by surface-initiated atom-transfer radical polymerization (SI-ATRP). Contact-angle, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FESEM) were measured to confirm that the surfaces and pore walls of the ceramic porous membranes have been modified by the brushes with this method successfully. The protein interaction behavior with the POEGMA modified membranes (AM-POEGMA) was studied by the model protein of bovine serum albumin (BSA). A protein-resistant mechanism of AM-POEGMA was proposed to describe an interesting phenomenon discovered in the filtration experiment, in which the initial flux filtrating BSA solution is higher than the pure water flux. The fouling of AM-POEGMA was easier to remove than AM for the action of POEGMA brushes, indicated that the ceramic porous membranes modified with POEGMA brushes exhibit excellent protein resistance. (C) 2011 Elsevier B.V. All rights reserved.