화학공학소재연구정보센터
Korean Journal of Rheology, Vol.3, No.2, 166-174, October, 1991
엉켜있는 2성분 선형 고분자의 제약완화 및 관 재형성 효과
Effects of Constraint Release and Tube Renewal on the Binary Blends of Entangled Linear Polymers
초록
동일화학종이면서 분자량이 다른 두 단분산 고분자를 혼합한 2성분 다분산 농축계에 equivalent primitive chain model을 적용하여 사슬주위의 제약완화에 따른 관의 재형성 효과를 각 사슬의 특성완화시간으로 산정하여 나타내었다. Polystyrene 시료에 대하여 동력학적 실험을 실시한 결과를 이용하여 사동모델에 따른 각 사슬의 최장완화시간은 복소수 점도의 허수부분(η") 대 주파수(ω)의 관계, 관의 재형성 시간은 ω 변화에 따른 storage modulus(G')로부터 각각 도출하였다. 이러한 작업을 통하여 특성완화시간들의 분자량 및 각 성분 농도에의 의존성을 더욱 상세히 파악할 수 있었다.
The equivalent primitive chain model, adequate to explain the relaxation behavior of entangled polymers in a binary blend system, was used to examine the characteristic relaxation times for the tube renewal process occurred by constraint release. From the dynamic shear measurements for some polystyrene samples, terminal relaxation times for each reptating chain were obtained from the plot of imaginary part (η") of complex viscosity vs. frequency (ω) and tube renewal times from the plot of d(log G')/d(log ω) vs. ω where G' means storage modulus. Throughout this work, the dependence of characteristic relaxation times on the molecular weight and the concentration of each component could be described more precisely.
  1. deGennes PG, J. Chem. Phys., 55, 572 (1971) 
  2. Doi M, Edwards SF, "The Theory of Polymer Dynamics," Clarendon Press, Oxford (1986)
  3. Klein J, Macromolecules, 11, 852 (1978) 
  4. Graessley WW, Adv. Polym. Sci., 47, 67 (1982)
  5. Monfort JP, Marin G, Monge P, Macromolecules, 17, 1551 (1984) 
  6. Monfort JP, Marin G, Monge P, Macromolecules, 19, 1979 (1986) 
  7. Watanabe H, Kotaka T, Macromolecules, 17, 2316 (1984) 
  8. Watanabe H, Sakamoto T, Kotaka T, Macromolecules, 18, 1008 (1985) 
  9. Struglinski MJ, Graessley WW, Macromolecules, 18, 2630 (1985) 
  10. Struglinski MJ, Graessley WW, Macromolecules, 18, 2643 (1985) 
  11. Daoud M, deGennes PG, J. Polym. Sci. B: Polym. Phys., 17, 1971 (1979)
  12. Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 74, 1789 (1978) 
  13. Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 74, 1802 (1978) 
  14. Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 74, 1818 (1978) 
  15. Schausberger A, Schindlauer G, Janeschitz-Kriegl H, Rheol. Acta, 22, 550 (1983) 
  16. Kurata M, Macromolecules, 17, 895 (1984) 
  17. Kim HY, Chung IJ, J. Polym. Sci. B: Polym. Phys., 25, 2039 (1987) 
  18. Kim RY, Chung IJ, Polym.(Korea), 11(1), 34 (1987)
  19. Kim HY, Ph.D. Thesis, KAIST, Seoul, Korea (1987)
  20. Yoon SJ, Kim KM, Woo SI, Chung IJ, Korean J. Chem. Eng., 5(2), 101 (1988)
  21. Kim HY, Choi KS, Chung IJ, Polym.(Korea), 13(5), 392 (1989)
  22. Choi KS, Chung IJ, Kim HY, Macromolecules, 21, 3171 (1988) 
  23. Choi KS, Ph.D. Thesis, KAIST, Seoul, Korea (1989)
  24. CHOI KS, CHUNG IJ, Korean J. Chem. Eng., 6(3), 206 (1989)
  25. Moon SK, Sung WY, Korean J. Chem. Eng., 2(1), 45 (1985)
  26. Klein J, Macromolecules, 19, 105 (1986) 
  27. Klein J, Nature, 274, 143 (1978)
  28. Klein J, Phil. Mag. A., 43, 771 (1981)
  29. Mills PJ, Green PF, Palmstrom CJ, Mayer JW, Kramer EJ, Appl. Phys. Lett., 45, 957 (1984) 
  30. Mills PJ, Green PF, Palmstrom CJ, Mayer JW, Kramer EJ, Phys. Rev. Lett., 53, 2143 (1984)
  31. Green PF, Palmstrom CJ, Mayer JW, Kramer EJ, Macromolecules, 18, 501 (1985) 
  32. Green PF, Kramer EJ, Macromolecules, 19, 1108 (1986) 
  33. Montfort JP, Polymer, 17, 1054 (1976) 
  34. Montfort JP, Marin G, Arman J, Monge P, Polymer, 19, 277 (1978) 
  35. Nemoto N, Ogawa T, Odani H, Kurata M, Macromolecules, 5, 641 (1972) 
  36. Masuda T, Toda N, Aota Y, Onogi S, Polym. J., 3, 315 (1972) 
  37. Raju VR, Menezes EV, Marin G, Graessley WW, Macromolecules, 14, 1668 (1981) 
  38. Kim SB, M.S. Thesis, KAIST, Seoul, Korea (1989)
  39. Doi M, Graessley WW, Helfand E, Pearson DS, Macromolecules, 20, 1900 (1987) 
  40. Viovy JL, Rubinstein M, Colby RH, Macromolecules, 24, 3587 (1991)