화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1272-1279, July, 2012
Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO-CeO2 catalysts prepared by deposition-precipitation
E-mail:
The production of hydrogen (H2) with a low concentration of carbon monoxide (CO) via steam reforming of methanol (SRM) over Au/CuO, Au/CeO2, (50:50)CuO-CeO2, Au/(50:50)CuO-CeO2, and commercial MegaMax 700 catalysts were investigated over reaction temperatures between 200 ℃ and 300 ℃ at atmospheric pressure. Au loading in the catalysts was maintained at 5 wt%. Supports were prepared by co-precipitation (CP) whilst all prepared catalysts were synthesized by deposition.precipitation (DP). The catalysts were characterized by Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM). Au/(50:50)CuO-CeO2 catalysts expressed a higher methanol conversion with negligible amount of CO than the others due to the integration of CuO particles into the CeO2 lattice, as evidenced by XRD, and a interaction of Au and CuO species, as evidenced by TPR. A 50:50 Cu:Ce atomic ratio was optimal for Au supported on CuO-CeO2 catalysts which can then promote SRM. Increasing the reaction time, by reducing the liquid feed rate from 3 to 1.5 cm3 h^(-1), resulted in a catalytic activity with complete (100%) methanol conversion, and a H2 and CO selectivity of ~82% and ~1.3%, respectively. From stability testing, Au/(50:50)CuO-CeO2 catalysts were still active for 540 min use even though the CuO was reduced to metallic Cu, as evidenced by XRD. Therefore, it can be concluded that metallic Cu is one of active components of the catalysts for SRM.
  1. Barbir F, PEM Fuel Cells: Theory and Practice, Elsevier Inc., USA, 1 (2005)
  2. Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389 (2003)
  3. Brown LF, Int. J. Hydrogen Energy., 26, 381 (2001)
  4. Pigos JM, Brooks CJ, Jacobs G, Davis BH, Appl. Catal. A: Gen., 328(1), 14 (2007)
  5. Peppley BA, Amphlett JC, Kearns LM, Mann RF, Appl. Catal. A: Gen., 179(1-2), 21 (1999)
  6. Peppley BA, Amphlett JC, Kearns LM, Mann RF, Appl. Catal. A: Gen., 179(1-2), 31 (1999)
  7. Ritzkopf I, Vukojevic S, Weidenthaler C, Grunwaldt JD, Schuth F, Appl. Catal. A: Gen., 302(2), 215 (2006)
  8. Huang CY, Sun YM, Chou CY, Su CC, J. Power Sources, 166(2), 450 (2007)
  9. Mastalir A, Patzko´ A, Frank B, Schoma¨cker R, Ressler T, Schlogl R, Catal.Commun., 8, 1684 (2007)
  10. Yang HM, Liao PH, Appl. Catal. A: Gen., 317(2), 226 (2007)
  11. Papavasiliou J, Avgouropoulos G, Ioannides T, Appl. Catal. B: Environ., 69(3-4), 226 (2007)
  12. Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249 (2004)
  13. Jones SD, Neal LM, Hagelin-Weaver HE, Appl. Catal. B: Environ., 84(3-4), 631 (2008)
  14. Matsumura Y, Ishibe H, Appl. Catal. B: Environ., 86(3-4), 114 (2009)
  15. Udani PPC, Gunawardana PVDS, Lee HC, Kim DH, Int. J. Hydrogen Energy., 34, 7648 (2009)
  16. Jones SD, Hagelin-Weaver HE, Appl. Catal. B: Environ., 90(1-2), 195 (2009)
  17. Liu Y, Hayakawa T, Suzuki K, Hamakawa S, Catal. Commun., 2, 195 (2001)
  18. Shen JP, Song CS, Catal. Today, 77(1-2), 89 (2002)
  19. Zhang XR, Shi PF, J. Mol. Catal. A-Chem., 194(1-2), 99 (2003)
  20. Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S, Appl. Catal. A: Gen., 293, 64 (2005)
  21. Jeong H, Kim KI, Kim TH, Ko CH, Park HC, Song IK, J. Power Sources, 159(2), 1296 (2006)
  22. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlogl R, Ressler T, Appl. Catal. A: Gen., 348(2), 153 (2008)
  23. Huang G, Liaw BJ, Jhang CJ, Chen YZ, Appl. Catal. A: Gen., 358(1), 7 (2009)
  24. Avgouropoulos G, Ioannides T, Appl. Catal. A: Gen., 244(1), 155 (2003)
  25. Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M, Catal. Lett., 93(1-2), 93 (2004)
  26. Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandan P, Kumaran RSS, Sachin M, Shetti VN, J. Catal., 221(2), 455 (2004)
  27. Manzoli M, Di Monte R, Boccuzzi F, Coluccia S, Kaspar J, Appl. Catal. B: Environ., 61(3-4), 192 (2005)
  28. Martinez-Arias A, Hungria AB, Fernandez-Garcia M, Conesa JC, Munuera G, J. Power Sources, 151, 32 (2005)
  29. Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S, Int. J. Hydrogen Energy., 32, 915 (2007)
  30. Ramaswamy V, Malwadkar S, Chilukuri S, Appl. Catal. B: Environ., 84(1-2), 21 (2008)
  31. Moretti E, Storaro L, Talon A, Patrono P, Pinzari F, Montanari T, Ramis G, Lenarda M, Appl. Catal. A: Gen., 344(1-2), 165 (2008)
  32. Chen YZ, Liaw BJ, Wang JM, Huang CT, Int. J. Hydrogen Energy., 33, 2389 (2008)
  33. Atake I, Nishida K, Li D, Shishido T, Oumi Y, Sano T, Takehira K, J. Mol. Catal. A-Chem., 275(1-2), 130 (2007)
  34. Djinovic´ P, Batista J, Pintar A, Catal. Today., 147S, S191 (2009)
  35. Djinovic P, Batista J, Pintar A, Appl. Catal. A: Gen., 347(1), 23 (2008)
  36. Suh YW, Moon SH, Rhee HK, Catal. Today, 63(2-4), 447 (2000)
  37. Wang L, Fang D, Huang X, Zhang S, Qi Y, Liu Z, J. Nat. Gas Chem., 15, 38 (2006)
  38. Yang HC, Chang FW, Roselin LS, J. Mol. Catal. A-Chem., 276(1-2), 184 (2007)
  39. Ou TC, Chang FW, Roselin LS, J. Mol. Catal. A-Chem., 293(1-2), 8 (2008)
  40. Wang H, Zhu H, Qin Z, Wang G, Liang F, Wang J, Catal. Commun., 9, 1487 (2008)
  41. Monyanon S, Pongstabodee S, Luengnaruemitchai A, J. Power Sources, 163(1), 547 (2006)
  42. Monyanon S, Luengnaruemitchai A, Pongstabodee S, Int. J. Hydrogen Energy., 35, 3234 (2010)