화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.189, No.1-2, 444-449, 2011
Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments
Batch tests were conducted to enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion in cathode chamber and sludge pretreatments (sterilization and base pretreatment) prior to sludge addition to anode chamber, respectively. During the stable stage, The voltage outputs and power densities of MFC increased from 0.28-0.31 V to 17.3-21.2 mW/m(2) to 0.41-0.43 V and 36.8-40.1 mW/m(2), respectively, when aerobic sludge digestion occurred in the cathode chamber. When the sludge added to the anode chamber was sterilized or base pretreated, the voltage outputs and power densities of MFC increased from 0.30-0.32 V and 19.9-22.6 mW/m(2) (raw sludge) to 0.34-0.36V and 25.5-28.6 mW/m(2) (sterilized sludge), 0.41-0.43 V and 37.1-40.8 mW/m(2) (base pretreated sludge), respectively. At the end of the test, the total suspended solids (TSS) and volatile suspended solids (VSS) reduction of sludge in the anode chambers increased from 33.9% and 36.8% to 34.5% and 38.7% with aerobic sludge digestion in the cathode chamber, respectively; while, those (TSS and VSS reduction) with sludge pretreatments prior to the sludge addition to the anode chambers increased from 25.1% and 22.8% (raw sludge) to 32.8% and 34.6% (sterilized sludge), and 25.5% and 26.7% (base pretreated sludge), respectively. The experimental results illuminated both aerobic sludge digestion in the cathode chamber and sludge pretreatments (sterilization and base pretreatment) prior to sludge addition to the anode chamber could enhance simultaneous electricity production from sludge and sludge reduction. (C) 2011 Elsevier B.V. All rights reserved.