Journal of Bioscience and Bioengineering, Vol.112, No.4, 338-344, 2011
Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis SCK-2 against Bacillus cereus
Bacillus subtilis SCK-2, producing an antimicrobial peptide of this study, was isolated from Kyeopjang, the Korean traditional fermented-soybean paste. This strain showed a narrow antagonistic activity as it inhibited Bacillus cereus causing food poisoning in human. The antimicrobial peptide, tentatively named AMP IC-1, was purified, characterized, and compared to BSAP-254, another peptide which was previously recovered from traditionally fermented-soybean paste. AMP IC-1 was found to be more thermally stable than BSAP-254, retained inhibitory activity similar to that of BSAP-254 over wide range of pH values, and was also destroyed by proteolytic enzymes. Two compounds were detected by anti-BSAP-254 polyclonal antibody and showed to contain peptide moieties and aliphatic hydrocarbons by Fourier transform infrared analysis. AMP IC-1 had an identical R(f) value (0.69) on TLC plate and a molecular weight similar to that of BSAP-254 (AMP IC-1, m/z 3401; BSAP-254, m/z 3400 to 3473). AMP IC-1 was found to contain about 33 residues and 13 types of amino acids: Cys, Asp or Asn, Glu or Gln, Ser, Gly, Arg, Thr, Ala, Pro, Val, Ile, Leu, and Lys. Compared to BSAP-254, the molar ratios of Asp or Mn, Ser, Val, and Leu were different and only AMP IC-1 contained Arg, but not Trp. Both compounds showed non-hemolytic activity. A partial synergistic effect against B. cereus was observed in response to treatment when AMP IC-1 and BSAP-254 were administered in combination. Therefore, AMP IC-1 is a possible candidate as an antimicrobial agent to prevent food-borne infectious disease in human caused by B. cereus. (c) 2011, The Society for Biotechnology, Japan. All rights reserved.