화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.3, 391-397, June, 2012
열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석
Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis
E-mail:
초록
기존 경질 원유 자원의 매장량 고갈과 중국, 인도 등 개발도상국에서의 에너지 수요가 급증하면서 원유 자원의 공급이 수요를 감당하지 못하는 상황이 벌어지고 있고, 따라서 상대적으로 활용도가 낮았던 중질유를 효율적으로 이용하는 방안이 대두되고 있다. 중질유를 활용하기 위해서는 경질화 과정을 거쳐야하는데, 특히 공정이 단순하고 경제적인 열분해 기술이 적합하다고 할 수 있겠다. 본 연구에서는 중질유의 열분해 특성 분석의 기초 자료를 얻기 위해 중질유에서 아스팔텐이 제거된 deasphalted oil(DAO)의 열분해 실험을 수행하였다. DAO는 solvent deasphalting 공정을 통하여 얻어지며 주로 탄소수가 20~40인 물질들로 이루어져 있는데, DAO의 열분해 반응 속도론적 분석 결과와 비교 분석하기 위해 DAO의 평균 탄소수를 갖는 탄소수 30의 단일 물질들(C30H62, C30H58O4S, C30H63O3P)을 선택하여 추가적인 열분해 실험을 수행하였다. 열분해 실험에서는 열중량 분석기를 이용하여 비등온 열분해 방법(10, 50, 100 ℃/min) 으로 실험을 진행하였고, 열분해 반응을 분석하는 방법으로는 가장 기초적인 Arrhenius 방법을 비롯하여 Ingraham and Marrier 방법, Coats and Redfern 방법, Ozawa-Flynn-Wall 방법을 이용하였다. Arrhenius, Ingraham and Marrier, Coats and Redfern 방법으로 계산된 DAO의 열분해 반응 평균 활성화에너지 값은 72~99 kJ/mol이었다. 그리고 Ozawa-Flynn-Wall 방법으로 분석된 활성화에너지에서는 전환율의 증가에 따라 DAO의 경우 그 상승 폭이 단일 물질들에 비해 크게 나타났다.
The depletion of conventional oil reserves and the increasing energy need in developing countries such as China and India result in exceeding oil demand over supply. As a solution of the problem, the efficient utilization of heavy oil has been receiving more and more interest. In order to utilize heavy oil, upgrading processes are required. Among the upgrading processes, thermal decomposition is thought to be relatively simple and economical. In this study, to understand basic characteristics of thermal decomposition of heavy oil, we conducted pyrolysis experiments of deasphalted oil (DAO) produced by a solvent deasphalting process. DAO is a mixture of many components and consists mainly of materials of carbon number 20~40. For the comparison with results of DAO pyrolysis, additional pyrolysis experiments with single materials of carbon number 30 (C30H62, C30H58O4S, C30H63O3P) were conducted. Pyrolysis experiments were carried out non-isothermally with variation of heating rate (10, 50, 100 ℃/min) in a thermogravimetric analyzer. Average pyrolysis activation energy determined by using Arrhenius method, Ingraham and Marrier method, and Coats and Redfern method was 72~99 kJ/mol. In the activation energy calculated by Ozawa-Flynn-Wall method, DAO had wider variation than other single materials.
  1. Guseo R, Dalla Valle A, Guidolin M, Technol. Forecast Soc. Change., 74, 452 (2007)
  2. Sorrell S, Speirs J, Bentley R, Brandt A, Miller R, Energy Policy, 38(9), 5290 (2010)
  3. Rana MS, Samano V, Ancheyta J, Diaz JAI, Fuel., 86(9), 1216 (2007)
  4. Yang HP, Yan R, Chin T, Liang DT, Chen HP, Zheng CG, Energy Fuels, 18(6), 1814 (2004)
  5. Kim DW, Lee JM, Kim JS, Korean Chem. Eng. Res., 47(6), 676 (2009)
  6. Reina J, Velo E, Puigjaner L, Thermochim. Acta, 320(1-2), 161 (1998)
  7. Font R, Marcilla A, Verdu E, Devesa J, J. Anal. Appl. Pyrolysis., 21(3), 249 (1991)
  8. Kumar A, Wang LJ, Dzenis YA, Jones DD, Hanna MA, Biomass Bioenerg., 32(5), 460 (2008)
  9. Kok MV, Pamir MR, J. Anal. Appl. Pyrolysis., 55(2), 185 (2000)
  10. Ambalae A, Mahinpey N, Freitag N, Energy Fuels, 20(2), 560 (2006)
  11. Kok MV, Acar C, J. Therm. Anal. Calorim., 83(2), 445 (2006)
  12. Ingraham TR, Marrier P, Can. J.Chem. Eng., 42(4), 161 (1964)
  13. Laidler KJ, Reaction Kinetics. Volume One, Pergamon Press, Oxford (1963)
  14. Coats AW, Redfern JP, J. Polymer Sci. B: Polym. Lett., 3, 917 (1965)
  15. Goncalves MLA, da Mota DAP, Teixeira AMRF, Teixeira MAG, J. Therm. Anal. Calorim., 91(2), 341 (2008)
  16. Conesa JA, Marcilla A, Caballero JA, Font R, J. Anal. Appl. Pyrolysis., 58, 617 (2001)
  17. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T, Thermochim. Acta, 355(1-2), 125 (2000)