화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.55, No.4, 1208-1217, 2012
Laminar film condensation driven latent thermal energy storage in rectangular containers
This paper focuses on numerically analyzing the thermal transport phenomena in the transient conjugate problem of melting and laminar film condensation. The key focus is to identify an optimum container aspect ratio/shape and conditions for which the heat storage time and the storage capacity are minimum and maximum respectively. Since most solid-liquid phase change materials (PCMs) suffer from poor thermal conductivities, the major resistance to heat transfer comes from PCM. Hence, high thermal conductivity, low-cost metal foam is suggested for use along with PCM to minimize this resistance. The conjugate transient problem of film condensation driven solid-liquid phase change of PCM impregnated inside porous metal foam is numerically analyzed. An effective heat capacity formulation is employed for modeling the transient PCM phase change in porous foam and is solved using finite element method. It is coupled with laminar film condensation on the outside of the storage container. The model is then used for selecting the best aspect ratio for thermal energy storage (TES) containers that enables to store comparatively the maximum heat. The results of the developed model showed that the major resistance to heat transfer and hence efficient thermal energy storage depends strongly on the aspect ratio of the PCM storage containers. (C) 2011 Elsevier Ltd. All rights reserved.