화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.1, 71-75, January, 2012
감마선에 의해 제조된 Poly(vinyl alcohol) 하이드로젤에서 Silver Nanoparticle의 제조 및 항균 특성
Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles in Poly(vinyl alcohol) Prepared by Gamma-Ray Irradiation
E-mail:
초록
본 연구는 폴리(비닐 알코올)(PVA) 하이드로젤 안에 AgNO3 용액을 이용하여 은 나노입자(AgNPs)를 제조하였다. PVA 입자를 증류수에 용해시킨 후, 50 kGy 감마선을 조사하여 PVA 하이드로젤을 제조하였다. 감마선을 이용하여 제조된 PVA 하이드로젤을 0.01, 0.05 M 질산은 수용액에 1시간 동안 침지후, 팽윤된 하이드로젤을 꺼내 감마선을 재조사하여 PVA 하이드로젤 내부에 AgNPs를 제조하였다. AgNPs가 함유된 PVA 하이드로젤의 UV 흡수 특성 및 FE-SEM 측정 결과, 감마선 조사량이 증가할수록 AgNPs의 생성이 증가하는 것을 확인할 수 있었으며, 같은 조사량에서 AgNO3 용액의 농도가 클수록 AgNPs 생성이 증가하였다. 액체배지 및 고체배지를 이용하여 그람 음성 세균인 E.coli와 S.aureus에 대한 PVA 하이드로젤에 생성된 AgNPs의 항균 실험 결과 매우 우수한 항균효과를 나타냈다.
In this study, silver nanoparticles (AgNPs) have been prepared by using aqueous AgNO3 solution in the poly(vinyl alcohol) (PVA) hydrogels. PVA powders were dissolved in deionized water, and then irradiated by gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA hydrogels were dipped into 0.01 and 0.05 M AgNO3 solution for 1 h respectively. After that, the swollen hydrogels were irradiated by gamma-ray at various doses to form AgNPs. UV-vis analysis indicated that the concentration of Ag NPs was enhanced by increasing absorbed dose and the concentration of AgNO3. FE-SEM measurements provided further evidence for the successful formation of Ag NPs in PVA hydrogels. Also, the antibacterial effect of PVA hydrogels stabilized AgNPs against Gram-negative bacteria (S.aureus and E.coli) in liquid as well as on solid growth media has been investigated. The AgNPs consolidated in PVA hydrogel networks have an excellent antibacterial effect.
  1. Kim SN, Roh J, Kang MS, Han YS, Lee BS, Kim Y, Park K, Choi K, Park EJ, Environ. Health Toxicol., 25, 215 (2010)
  2. Cho KH, Park SG, J. Korean Ind. Eng. Chem., 15(8), 952 (2004)
  3. Kim TN, Fen QL, Kim OJ, Wu J, Wang H, Chen GC, Cui FZ, J. Mater. Sci. Med., 9, 129 (1998)
  4. Lee CJ, Kim DY, Kim BS, J. Korean Ind. Eng. Chem., 18(4), 396 (2007)
  5. Hwang IS, Cho JY, Hwang JH, Hwang B, Choi H, Lee J, Lee DG, Korean J. Microbiol. Biotechnol., 39, 1 (2011)
  6. Kim JY, Kim TY, Yoo JY, J. Korean Ind. Eng. Chem., 20(3), 251 (2009)
  7. He BL, Tan JJ, Kong YL, Liu HF, J. Mol. Catal. A-Chem., 221(1-2), 121 (2004)
  8. Huang NM, Lim HN, Radiman S, Khiew PS, Chiu WS, Hashim R, Chia CH, Colloid Surface A., 353, 69 (2010)
  9. Sun X, Luo Y, Mater. Lett., 59, 3847 (2005)
  10. Tolaymat TM, Badawy EL, Genaidy AM, Scheckel KG, Luxton TP, Suidan M, Sci. Total Environ., 408, 999 (2010)
  11. Rana VK, Pandey AK, Singh RP, Kumar B, Mishra S, Ha CS, Macromol. Res., 18(8), 713 (2010)
  12. Ji BC, Lee EM, Yeum JH, Polym.(Korea), 34(4), 341 (2010)
  13. Naghavi K, Saion E, Rezaee K, Yunus WMM, Rad.Phys. Chem., 79, 1203 (2010)
  14. Choi EK, Kim HI, Park KR, Nho YC, J. Korean Ind. Eng. Chem., 14(4), 505 (2003)
  15. Park KR, Nho YC, Polym.(Korea), 26(6), 792 (2002)
  16. Zheng Y, Nguyen MK, He C, Huynh CT, Lee DS, Macromol. Res., 18(11), 1096 (2010)
  17. Nguyen MK, Lee DS, Macromol. Res., 18(3), 284 (2010)
  18. Ryu WS, Lee SJ, Choi WS, Lee SS, Lee JY, News and Information for Chemical Enginners., 20, 143 (2002)
  19. Ossipov DA, Hilborn J, Macromolecules, 39(5), 1709 (2006)
  20. Purss HK, Qiao GG, Solomon DH, J. Appl. Polym. Sci., 96(3), 780 (2005)
  21. Ajji Z, Radiat. Phys. Chem., 74, 36 (2005)
  22. Benamer S, Mahlous M, Boukrif A, Masouri B, Larbi YS, Nucl. Instrum. Methods Phys. Res. B., 248, 284 (2006)
  23. Martens P, Anseth KS, Polymer, 41(21), 7715 (2000)
  24. Mohan YM, Lee K, Premkumar T, Geckeler KE, Polymer, 48(1), 158 (2007)
  25. Gils PS, Ray D, Sahoo PK, Int. J. Biol. Macromol., 46, 237 (2010)
  26. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM, J. Colloid Interface Sci., 342(1), 73 (2010)
  27. Kim YH, J. Korean Ind. Eng. Chem., 14(4), 487 (2003)
  28. Liu FK, Hsu YC, Tsai MH, Chu TC, Mater. Lett., 61, 2402 (2007)
  29. Liu YS, Chen SM, Zhong L, Wu GZ, Radiat. Phys. Chem., 78, 251 (2009)