화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.34, No.8, 1228-1234, 2011
Static Formation and Dissociation of Methane plus Methylcyclohexane Hydrate for Gas Hydrate Production and Regasification
The formation and decomposition of methane+methylcyclohexane (MCH) hydrate in a static batch reactor, which was also designed as a high-pressure microwave reactor, were investigated. The addition of 300 ppm sodium dodecyl sulfate (SDS) provides continuous formation of CH4+MCH hydrate under static conditions. Increasing the initial pressure within the narrow range of 2.7 to 4.6 MPa at 274 K enhances the formation rate by even several times. The gas storage capacity can be largely improved with partial coexisting of sI CH4 hydrate. Unlike a stirred formation, an increase of nonaqueous MCH inhibits the static formation of sH hydrate. The following regasification by 2.45 GHz microwave heating indicates that the dissociation is rate-controlled by the parallel connection of efficient internal heating and conventional external heating. The multiphase convection characterized by osmotic dehydration and driven by intensified regasification is considered as the dominant mechanism affecting the quiescent dissociation.