화학공학소재연구정보센터
Canadian Journal of Chemical Engineering, Vol.89, No.5, 1191-1206, 2011
CHEMISTRY AND APPLICATIONS OF NANOCRYSTALLINE CELLULOSE AND ITS DERIVATIVES: A NANOTECHNOLOGY PERSPECTIVE
Nanocrystalline cellulose (NCC) is an emerging renewable nanomaterial that holds promise in many different applications, such as in personal care, chemicals, foods, pharmaceuticals, etc. By appropriate modification of NCC, various functional nanomaterials with outstanding properties, or significantly improved physical, chemical, biological, as well as electronic properties can be developed. The nanoparticles are stabilised in aqueous suspension by negative charges on the surface, which are produced during the acid hydrolysis process. NCC suspensions can form a chiral nematic ordered phase beyond a critical concentration, i.e. NCC suspensions transform from an isotropic to an anisotropic chiral nematic liquid crystalline phase. Due to its nanoscale dimension and intrinsic physicochemical properties, NCC is a promising renewable biomaterial that can be used as a reinforcing component in high performance nanocomposites. Many new nanocomposite materials with attractive properties were obtained by the physical incorporation of NCC into a natural or synthetic polymeric matrix. Simple chemical modification on NCC surface can improve its dispersability in different solvents and expand its utilisation in nano-related applications, such as drug delivery, protein immobilisation, and inorganic reaction template. This review paper provides an overview on this emerging nanomaterial, focusing on the surface modification, properties and applications of NCC.