화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.6, 672-678, December, 2011
무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성
Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites
E-mail:,
초록
본 연구에서는 니켈 함량에 탄소섬유강화 에폭시 기지 복합재료의 전자파 차폐효과에 대해 고찰을 위해 탄소섬유 표면에 시간의 변수에 따른 무전해 도금을 실시하였다. 탄소섬유 표면의 특성은 주사전자현미경과 X-선광전자분광법으로 측정하였고 전기적 특성은 4단자법으로 분석을 진행하였다. 복합재료의 전자파 차폐효과는 흡수와 반사 두 가지 방법으로 분석을 진행하였다. 실험 결과로부터 전자파 차폐효과는 탄소섬유 표면에 코팅된 니켈 함량이 증가됨에 따라 순차적으로 증가되는 것이 확인되었으나, 고주파 영역에서는 과량의 니켈 도금이 더 이상의 전자파 차폐효율을 증가시키지 않는 것이 확인되었다. 결론적으로 니켈 함량이 탄소섬유 복합재료의 전자파 차폐효과를 결정하는 요소가 될 수 있다고 판단되나, 특정 주파수마다 최적화된 금속도입 함량에 대한 변수가 있을 수 있다고 판단된다.
In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn’t show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.
  1. Kim BR, Lee HK, Park SH, Kim HK, Thin Solid Films., 519, 3496 (2011)
  2. Al-Ghamdi AA, Tantawy FE, Comp. Part A : Appl. Sci.Manuf., 41, 1693 (2010)
  3. Chen CS, Chen WR, Chen SC, Chien RD, Int.Commun. Heat. Mass., 35, 744 (2008)
  4. Huang CY, Mo WW, Roan ML, Surf. Coat. Tech., 184, 123 (2004)
  5. Kim YY, Yun J, Lee YS, Kim HI, Carbon Lett., 12, 48 (2011)
  6. Lee BO, Woo WJ, Song HS, Park HS, Hahm HS, Wu JP, Kim MS, J. Ind. Eng. Chem., 7, 305 (2011)
  7. Musal HM, Hahn HT, IEEE Trans. on Magn., 25, 3851 (1989)
  8. Liu Q, Zhang D, Fan T, Gu J, Miyamoto Y, Chen Z, Carbon., 46, 461 (2008)
  9. Huang Y, Li N, Ma Y, Du F, Du F, Li F, He X, Carbon., 45, 1614 (2007)
  10. Liu Z, Bai G, Huang Y, Ma Y, Li F, Guo T, Carbon., 45, 821 (2007)
  11. Bhadra S, Singha NK, Khastgir D, Curr. Appl. Phys., 9, 396 (2009)
  12. Cao MS, Song WL, Hou ZL, Wen B, Yuan J, Carbon., 48, 796 (2010)
  13. Park SJ, Kim MH, Lee JR, Choi S, J. Colloid Interface Sci., 228(2), 287 (2000)
  14. Park SJ, Cho MS, Carbon., 38, 1053 (2000)
  15. Kim JG, Chung CH, Lee YS, Appl. Chem. Eng., 22, 143 (2011)
  16. Heo GY, Seo MK, Oh SY, Choi KE, Park SJ, Carbon Lett., 12, 53 (2011)
  17. Ishino K, Electro. Ceram., 19, 22 (1988)
  18. Yacubowicz J, Narkis M, Benguigui L, Polym. Eng, Sci., 30, 459 (1990)
  19. Chung KT, Sabo A, Pica AP, J. Appl. Phys., 53, 6968 (1992)
  20. Park KY, Han JH, Lee SB, Yi JW, Comp. Part A :Appl. Sci. Manuf., 42, 572 (2011)
  21. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998)
  22. Park SJ, Kim BJ, Rhee JM, Polym.(Korea), 27(1), 52 (2003)
  23. Park SJ, Jang YS, Lee JR, Polym.(Korea), 25(2), 218 (2001)
  24. Liu J, Tian YL, Chen YJ, Liang JY, Appl. Surf. Sci., 256(21), 6199 (2010)
  25. Lantelme F, Seghiouer A, Derja A, J. Appl. Electrochem., 28(9), 907 (1998)
  26. Kimura T, Ishiguro A, Andou Y, Fujita K, J. Power Sources, 85(1), 149 (2000)
  27. Gardner SD, Singamsetty CSK, Booth GL, He GR, Pittman CU, Carbon., 33, 587 (1995)
  28. Brown NMD, Hewitt JA, Meeanan BJ, Surf. Interface Anal., 18, 187 (1992)
  29. Mcintyre NS, Gook MG, Anal. Chem., 47, 2208 (1975)
  30. Park SJ, Jang YS, J. Colloid Interface Sci., 263(1), 170 (2003)
  31. Park SJ, Oh JS, Suh DH, J. Korean Ind. Eng. Chem., 14(5), 586 (2003)
  32. Rho SB, Lim MA, Polym.(Korea), 23(5), 662 (1999)
  33. Park SJ, Oh JS, Suh DH, Korean Chem. Eng. Res., 42(1), 102 (2004)
  34. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1741 (1969)
  35. Kaeble DH, J. Adhes., 2, 66 (1970)
  36. Haufler RE, J. Phys. Chem., 94, 8634 (1990)
  37. Chen YH, Huang CY, Lai FD, Roan ML, Chen KN, Yeh JT, Thin Solid Films., 517, 4984 (2009)
  38. Schulz RB, Plantz VC, Brush DR, IEEE Trans.Electromagn. Compat., 30, 362 (1988)
  39. Huang CY, Pai JF, Eur. Polym. J., 34, 261 (1998)
  40. Tzeng SS, Chang FY, Mater. Sci. Eng. A : Struct. Mater., 302, 258 (2001)
  41. Chen CS, Chen WR, Chen SC, Chien RD, Int. Commun. Heat. Mass., 35, 744 (2008)
  42. Wu ZP, Li MM, Hu YY, Li YS, Wang ZX, Yin YH, Chen YS, Zhou X, Scripta Mater., 64, 809 (2011)
  43. Schulz RB, Plantz VC, Brush DR, IEEE Trans. on Magn., 30, 362 (1988)
  44. Al-Saleh MH, Gelves GA, Sundararaj U, Comp. Part A :Appl. Sci. Manuf., 42, 92 (2011)
  45. Apollo S, J. Phys. D : Appl. Phys., 32, 991 (1999)