화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.10, 1029-1034, October, 2011
Characterization of Superabsorbent Carboxymethylcellulose/Clay Hydrogel Prepared by Electron Beam Irradiation
E-mail:
Hydrogels for this study were prepared from a mixture of carboxymethyl cellulose (CMC) and different concentration of clay using freezing and thawing cycles followed by electron beam irradiation. The introduction of montmorillonite (MMT) up to 4% leads to an increase in the gel fraction and an improvement in water resistance indicating that the clay is well dispersed within the polymer matrix. Their swelling (%) of the hydrogel in distilled water and different physiological fluids, such as physiological saline water and synthetic urine, were evaluated. These results suggest that the maximum swelling (%) in water reached 3559% compared to the dry hydrogels but still maintained its steady appearance. Moreover, the hydrogels exhibited smart swelling and shrinking in NaCl and synthetic urine. The surface morphology and thermal properties of these hydrogels were characterized by scanning electron microscopy and thermogravimetric analysis (TGA). The ability of the prepared hydrogel to absorb and retain a large amount of water and simulated urine was measured. The results suggested the possible use of CMC/MMT composite hydrogels in the personal care product industry.
  1. Li JF, Lu JH, Li YM, J. Appl. Polym. Sci., 112(1), 261 (2009)
  2. Shang J, Shao ZZ, Chen X, Polymer, 49(25), 5520 (2008)
  3. Wu Y, Sasaki T, Irie S, Sakurai K, Polymer, 49(9), 2321 (2008)
  4. Wang C, Liu H, Gao Q, Liu X, Tong Z, Carbohydr. Polym., 74, 476 (2008)
  5. Liu H, Wang C, Gao Q, Tong Z, Int. J. Pharm., 351, 104 (2008)
  6. Mathew N, Kalyanasundaram M, Pest Manag. Sci., 60, 685 (2004)
  7. Bajpai AK, Giri A, Carbohydr. Polym., 53, 271 (2003)
  8. Zhumagalieva SN, Beisebekov MK, Abilov ZA, in Trudy Mezhdunarodnoi Nauchno-Prakticheskoi Konferentsii, Proc. Int. Sci.-Pract. Conf., Pavlodar, 2011, p 221.
  9. Huang MF, Yu JG, Ma XF, Jin P, Polymer, 46(9), 3157 (2005)
  10. Bagdi K, Muller P, Pukanszky B, Compos. Interfaces, 13(1), 1 (2006)
  11. Ray SS, Kamoto OM, Polym. Sci., 28, 1539 (2003)
  12. Pourjavadi A, Harzandi AM, Hosseinzadeh H, Eur. Polym. J., 40, 1363 (2004)
  13. Pourjavadi A, Harzandi AM, Amini-Fazl MS, Eur. Polym. J., 44, 1209 (2008)
  14. Ibrahim SM, El Salmawi KM, Zahran AH, J. Appl. Polym. Sci., 104(3), 2003 (2007)
  15. Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM, J. Colloid Interface Sci., 318(2), 217 (2008)
  16. Kim JK, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu LC, Biomacromolecules, 9(1), 149 (2008)
  17. Adhikari B, Majumdar S, Prog. Polym. Sci., 29, 699 (2004)
  18. Pourjavadi A, Ghasemzadeh H, Soleyman R, J. Appl. Polym. Sci., 105(5), 2631 (2007)
  19. Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB, J. Appl. Polym. Sci., 105(5), 2903 (2007)
  20. Rodriguez R, Lorenzo AC, Concheiro A, J. Control. Release, 86, 253 (2003)
  21. Zhang XZ, Yang YY, Chung TS, J. Colloid Interface Sci., 246(1), 105 (2002)
  22. Abd Alla SG, El-Din HMN, El-Naggar AWM, J. Appl. Polym. Sci., 102(2), 1129 (2006)
  23. Zhao Y, Kang J, Tan TW, Polymer, 47(22), 7702 (2006)
  24. Abd El-Rehim HA, Radiat. Phys. Chem., 74, 111 (2005)
  25. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)