화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.5, 453-460, October, 2011
초임계 유체의 미생물 불활성화 특성 및 기작
Antimicrobial Activity and Mechanism of Supercritical Fluids
E-mail:
초록
안전하고 미생물 불활성화 능력이 높은 초임계 유체(이산화탄소 및 일산화이질소)는 최근 식품 및 의료 분야 등에서 비가열 살균기술로 응용 가능성이 높아 관심이 증대되고 있다. 하지만 초임계 유체를 이용한 많은 응용 연구에도 불구하고 초임계 유체 살균기술의 살균 성능 및 기작에 대한 이해 부족으로 아직 널리 활용되고 있지 못하다. 따라서 본 글에서는 기존 연구를 중심으로 초임계 유체 특성, 미생물 불활성화 특성과 기작, 주요 영향 인자, 응용 분야 등에 대해서 정리 및 검토하여 초임계 유체 살균기술의 연구 및 상용화에 도움이 되고자 한다.
Recently, there is growing interests in the application of supercritical fluids for food and medical fields since supercritical fluids (CO2 and N2O) have known to be safe and effective as a non-thermal sterilization technique. Although supercritical fluids have been investigated for various kinds of products, they have not yet been used in common currency due to their lack of knowledge related to the antimicrobial activity or detailed mechanisms. In this review paper, we summarized the characteristics, antimicrobial activity and mechanisms, important factors, and applicability of supercritical fluids to help the investigation and commercialization of supercritical fluids sterilization technique.
  1. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Ginneken LV, Debevere J, Van Impe F, Devlieghere F, Int. J. Food Microbiol., 117, 1 (2007)
  2. Zhang J, Davis TA, Matthews MA, Drews MJ, LaBerge M, An YHH, J. Supercrit. Fluids, 38(3), 354 (2006)
  3. Dempsey DJ, Thirucote RR, J. Biomater. Appl., 3, 454 (1989)
  4. Premnath V, Harris WH, Jasty M, Merrill EW, Biomaterials., 17, 1741 (1996)
  5. Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R, Proc. Natl. Acad. Scoi., 96, 10344 (1999)
  6. Clapp PA, Davies MJ, Free Radic. Res., 21, 147 (1994)
  7. Devlieghere F, Vermeiren L, Debevere J, Int. Dairy J., 14, 273 (2004)
  8. Juneja VK, Thayer DW, Irradiation and other physically based control strategies for foodborne pathogens, ed. Wilson CL, Droby S, 171, CRC Press, Boca Raton (2000)
  9. Hong S, Park W, Pyun Y, Int. J. Food Sci. Technol., 34, 125 (1999)
  10. Spilimbergo S, Elvassore N, Bertucco A, J. Supercrit. Fluids, 22(1), 55 (2002)
  11. Lucien FP, Foster NR, Phase behavior and solubility, ed. Jessop PG, Leitner W, 37, Wiley-VCH, Wei (1999)
  12. Gunes G, Blum LK, Hotchkiss JH, J. Sci. Food Agric., 85, 2362 (2005)
  13. Spilimbergo S, Mantoan D, Dalser A, J. Supercrit. Fluids, 40(3), 485 (2007)
  14. Gasperi F, Aprea E, Biasioli F, Carlin S, Endrizzi I, Pirretti G, Spilimbergo S, Food Chem., 115, 129 (2009)
  15. Mun S, Hahn JS, Lee YW, Yoon J, J. Int. Food Microbiol., 144, 372 (2011)
  16. Mchardy J, Sawan SP, Supercritical fluid cleaning: Fundamentals, Technology and Applications, 5, Noyes publications, New Jersey (1998)
  17. Dixon NM, Kell DB, J. Appl. Bacteriol., 67, 109 (1989)
  18. Fraser D, Nature., 167, 33 (1951)
  19. Kamihira M, Taniguchi M, Kobayashi T, Agric. Biol. Chem., 51, 407 (1987)
  20. Meyssami B, Balaban MO, Teixeira AA, Biotechnol. Prog., 8, 149 (1992)
  21. Ballestra P, Dasilva AA, Cuq JL, J. Food Sci., 61, 829 (1996)
  22. Erkmen O, Int. J. Food Microbiol., 65, 131 (2001)
  23. Lin H, Cao NJ, Chen L, J. Food Sci., 59, 657 (1994)
  24. Kim SR, Rhee MS, Kim BC, Lee H, Kim KH, J. Microbiol. Meth., 70, 132 (2007)
  25. Hong S, Pyun YR, J. Food Sci., 64, 728 (1999)
  26. Lin H, Yang Z, Chen L, Chem. Eng. J., 52, B29 (1993)
  27. Fages J, Marty A, Biomaterials., 15, 650 (1994)
  28. Castor TP, Lander AD, Viral inactivation method, WO Patent 93/17724 (1993)
  29. Dehghani F, Annabi N, Titus M, Valtchev P, Tumilar A, Biotechnol. Bioeng., 102(2), 569 (2009)
  30. Lin H, Yang Z, Chen L, Biotechnol. Prog., 8, 458 (1992)
  31. Zhang J, Burrows S, Gleason C, Matthews MA, Drews MJ, LaBerge M, An YHH, J. Microbiol. Meth., 66, 479 (2006)
  32. White A, Burns D, Christensen TW, J. Biotechnol., 123, 504 (2006)
  33. Spilimbergo S, Bertucco A, Biotechnol. Bioeng., 84(6), 627 (2003)
  34. Shimoda M, Cocunubo-Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I, J. Appl. Microbiol., 91(2), 306 (2001)
  35. Werner BG, Hotchkiss JH, J. Dairy Sci., 89, 872 (2006)
  36. Shimoda M, Yamamoto Y, Cocunubo-Castellanos J, Kawano T, Ishikawa H, Osajima Y, J. Food Sci., 63, 709 (1998)
  37. Ishikawa H, Shimoda M, Shiratsuchi H, Osahima Y, Biosci. Biotech. Biochem., 59, 1949 (1995)
  38. Enomoto A, Nakamura K, Nagai K, Hashimoto T, Hakoda M, Biosci. Biotech. Biochem., 61, 1133 (1997)
  39. Udea L, Kamaya H, Anesth. Anoalg., 63, 929 (1984)
  40. Gorga JC, Hazzard JH, Caughey WW, Arch. Biochem. Biophys., 240, 734 (1985)
  41. Hazzard JH, Gorga JC, Caughey WS, Arch. Biochem. Biophys., 240, 747 (1985)
  42. Arao T, Hara Y, Suzuki Y, Tamura K, Biosci. Biotech. Bioch., 69, 1365 (2005)
  43. Fages J, Poirier B, Barbier Y, Frayssinet P, Joffret M, Majewski W, Bonel G, Larzul D, ASAIO J., 44, 289 (1998)
  44. Cinquemani C, Boyle C, Bach E, Schollmeyer E, J. Supercrit. Fluids, 42(3), 392 (2007)
  45. Mun S, Jeong J, Kim J, Lee Y, Yoon J, Biofouling., 25, 473 (2009)
  46. David RL, Handbook of chemical and physic, 84, 6-201, CRC Press (2003)