화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.406, No.4, 512-517, 2011
HMGA1a is involved in specific splice site regulation of human immunodeficiency virus type 1
Human immunodeficiency virus type 1 (HIV-1) utilizes a highly complex splice site regulation system, taking advantage of host proteins, to express its own viral protein in an orderly way. We show here that one of the host proteins, high mobility group A protein la (HMGA1a), is involved in splice site regulation of 3' splice site 2 (A2) and 5'splice site 3 (D3) of HIV-1 genomic RNA. shRNA knockdown of HMGA1 in HeLa cells resulting in a decrease of HMGA1 showed a significant decrease of Vpr mRNA. RNA electophoretic mobility shift assays showed HMGA1a specifically binds to a sequence adjacently upstream D3. In vitro splicing using heterologous pre-mRNA with A2 and D3, showed HMGA1a induced a splicing intermediate which decreased when an RNA decoy of the HMGA1a binding site was added. RT-PCR of in vitro splicing products revealed that HMGA1a induced an incomplete splicing product resulting from usage of A2 but inhibition of D3, which is reminiscent of the splicing pattern necessary for Vpr mRNA formation. HMGA1a interacted with hnRNPA1 shown by coimmunoprecipitation and supershifted U1 snRNP in an RNA electophoretic mobility shift assay. We conclude that HMGA1a anchors U1 snRNP to inhibit D3 function, and that HMGA1a inhibits hnRNPA1 function on exon splicing silencer of Vpr (ESSV) to activate A2 function. We show here for the first time that HMGA1a is involved in specific splice site regulation of HIV-1. (C) 2011 Elsevier Inc. All rights reserved.