화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.405, No.2, 256-261, 2011
Psoralen stimulates osteoblast differentiation through activation of BMP signaling
Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. In order to improve the treatment of osteoporosis, identification of anabolic and orally available agents with minimal side effects is highly desirable. Psoralen is a coumarin-like derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the role of Psoralen in osteoblast function and the underlying molecular mechanisms remain poorly understood. In this study, we found that Psoralen promoted osteoblast differentiation in primary mouse calvarial osteoblasts in a dose-dependent manner, demonstrated by up-regulation of expressions of osteoblast-specific marker genes including type I collagen, osteocalcin and bone sialoprotein and enhancement of alkaline phosphatase activity. We further demonstrated that Psoralen up-regulated the expression of Bmp2 and Bmp4 genes, increased the protein level of phospho-Smad1/5/8, and activated BMP reporter (12xSBE-OC-Luc) activity in a dose-dependent manner, as well as enhanced the expression of Osx, the direct target gene of BMP signaling. Deletion of the Bmp2 and Bmp4 genes abolished the stimulatory effect of Psoralen on the expression of osteoblast marker genes, such as Coll, Alp, Oc and Bsp. Our results suggest that Psoralen acts through the activation of BMP signaling to promote osteoblast differentiation and demonstrate that Psoralen could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis. (C) 2011 Elsevier Inc. All rights reserved.