화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.1, 95-100, February, 2011
Phenylene-Thiophene-Thieno[3,4-b]pyrazine 올리고머의 합성과 특성
Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer
E-mail:
초록
본 연구에서는 유기 태양전지용 작은 밴드 갭 물질(p-형 반도체)의 개발 과정에서, 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT) 및 2,3-dimethylthieno[3,4-b]pyrazine(TP)을 반복단위로 갖는 올리고머(oligo(OP-HT-TP))를 합성하였다. Oligo(OP-HT-TP)는 측정 온도 범위에서 무정형 상태로 존재하였으며, 범용 유기용매에 잘 용해되었다. 필름상태에서 최대 흡수 파장은 716 nm이었으며, 밴드 갭은 대략 1.20 eV로 측정되었다. Oligo(OP-HT-TP)의 HOMO와 LUMO의 에너지 준위는 각각 -5.27 eV와 -4.04 eV로 측정되었다. 그러나, 이 올리고머의 최대 흡수 파장에서 흡광도는 유기태양전지의 제작에 있어서 현재까지 가장 많이 사용되고 있는 poly(3-hexylthiophene) 흡광도의 1/5보다도 더 작은 것으로 측정되었다.
During the development of low band-gap organic materials(p-type semiconducting organic compounds) for organic solar cells, an oligomer consisting of 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT), and 2,3-dimethylthieno[3,4-b]pyrazine(TP) as repeat units, oligo(OP-HT-TP), was synthesized. The oligomer was amorphous in nature in the temperature range studied, and well soluble in common organic solvents such as chloroform. The maximum absorption wavelength was 716 nm in solid state. The band-gap and HOMO/LUMO energy levels of oligo(OP-HT-TP) were measured to be 1.20 eV and -5.27/4.04 eV, respectively. However, the absorbance of the oligomer at maximum absorption wavelength was less than one fifth of that of poly(3-hexylthiophene) which has been most frequently used in fabrication of organic solar cells.
  1. Dhanabalan A, van Duren JKJ, van Hal PA, van Dongen JLJ, Janssen RAJ, Adv. Funct. Mater., 11(4), 255 (2001)
  2. Schilinsky P, Waldauf C, Brabec CJ, Appl. Phys. Lett., 87, 3885 (2002)
  3. Reyes-Reyes M, Kim KK, Carroll DL, Appl. Phys. Lett., 87, 83506 (2005)
  4. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
  5. Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ, Adv. Mater., 18(5), 572 (2006)
  6. Koetse MM, Sweelssen J, Hoekerd KT, Schoo HFM, Veenstra SC, Kroon JM, Yang X, Loos J, Appl. Phys. Lett., 88, 083504 (2006)
  7. Xia YJ, Su XH, He ZC, Ren X, Wu HB, Cao Y, Fan DW, Macromol. Rapid Commun., 31, 1287 (2010)
  8. Mikroyannidis JA, Kabanakis AN, Balraju P, Sharma GD, Macromolecules, 43, 5544 (2010)
  9. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP, Adv. Mater., 22(20), E135 (2010)
  10. Li JC, Seo EO, Lee SH, Lee YS, Macromol. Res., 18(3), 304 (2010)
  11. Li JC, Hwang ML, Lee EW, Lee SH, Yu SC, Lee YS, Bull. Korean Chem. Soc., 31, 2073 (2010)
  12. Karsten BP, Viani L, Gierschner J, Cornil J, Janssen RAJ, J. Phys. Chem. A, 112(43), 10764 (2008)
  13. Winzenberg KN, Kemppinen P, Fanchini G, Bown M, Collis GE, Forsyth CM, Hegedus K, Singh TB, Watkins SE, Chem. Mater., 21, 5701 (2009)
  14. Li JC, Kim SJ, Lee SH, Lee YS, Zong K, Yu SC, Macromol. Res., 17(5), 356 (2009)
  15. Aubert PH, Knipper M, Groenendaal L, Lutsen L, Manca J, Vanderzande D, Macromolecules, 37(11), 4087 (2004)
  16. Li JC, Seo EO, Lee SH, Lee YS, Macromol. Res., 18(3), 304 (2010)
  17. Moses D, Dogariu A, Heeger AJ, Physical Review B., 61, 9373 (2000)
  18. Zhu Y, Rabindranath AR, Beyerlein T, Tieke B, Macromolecules, 40(19), 6981 (2007)
  19. Zoombelt AP, Fonrodona M, Turbiez MGR, Wienk MM, Janssen RAJ, J. Mater. Chem., 19, 5336 (2009)
  20. Kim JY, Lee KH, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ, Science, 317, 222 (2007)