화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.1, 62-68, February, 2011
(MMA-co-GMA-co-AA)형 아크릴레이트 공중합체를 도포한 투명필름의 제조
Preparation of Transparent Film by Coating of Acrylate Copolymer as MMA-co-GMA-co-AA
E-mail:
초록
본 연구에서는 투명 보호필름에 적용할 수 있는 내구성과 연신성이 우수한(MMA-co-GMA-co-AA) 형의 아크릴레이트 공중합체를 합성하였으며 MMA와 AA 간의 중합효율을 높이기 위하여 GMA를 매개제로 선택하였다. GMA의 함량이 증가할수록 아크릴레이트 공중합체의 분자량과 내구성은 개선되었으나 연신성은 떨어졌고 AA의 함량이 증가할수록 공중합체의 분자량과 내구성은 낮아졌으나 반대로 연신성은 개선되었다. MMA의 함량이 30 g인 조건에서, 아크릴레이트 공중합체 막의 내구성과 연신성을 개선할 수 있는 GMA/MMA의 최적 몰 비는 1.6, AA/GMA의 최적 몰비는 1.8이였으며 공중합체의 평균분자량과 Tg는 각각 13,300 g/mol, 136.5 ℃였다. 아크릴레이트 공중합체를 1.4 g/m2 도포된 필름의 표면경도는 1 H였으며 5, 15% 연신조건에서 연신성이 모두 양호하였다. 도포량을 4.1~4.6 g/m2으로 높으면 표면경도는 3 H로 개선되었다.
In the study, acrylate copolymer as MMA-co-GMA-co-AA with a high hardness and flexibility was synthesized for applying to the clear protection film, where GMA was used as a mediator to enhance polymerization-efficiency between MMA and AA. With an increase of GMA content, molecular weight and hardness of acrylate copolymer increased, however, flexibility decreased. With an increase of AA content, its molecular weight and hardness decreased, however, flexibility increased. Molar ratio of GMA/MMA and AA/GMA were optimized as 1.6 and 1.8, respectively, at 30 g of MMA to enhance hardness and flexibility of acrylate copolymer film. Molecular weight and Tg of the acrylate copoylmer were 13,300 g/mol and 136.5 ℃, respectively. Hardness of the coated film at 1.4 g/m2 of spread was 1 H and no crack was observed at expansion ratio of 5% and 15%, respectively. Hardness of film was improved to 3 H by increasing spread of 4.1~4.6 g/m2.
  1. Kardar P, Ebrahimi M, Bastanib S, Jalili M, Prog. Org. Coat., 64, 74 (2009)
  2. Wang H, Xu S, Shi W, Prog. Org. Coat., 65, 417 (2009)
  3. Do HS, Kim DJ, Kim HJ, J. Adhes. Interface, 4, 41 (2003)
  4. Kim UY, Huang RY, Eur. Polym. J., 15, 325 (1979)
  5. EI-Hamouly SH, Aziz W, El-Shamy EH, Abd-El-Nour KN, Polym. Degrad. Stab., 37, 41 (1992)
  6. Abusafieh A, Gobran R, Kalidindi SR, J. Appl. Polym. Sci., 63(1), 75 (1997)
  7. Chae KH, Song HB, Polym. Bull., 40(6), 667 (1998)
  8. Gonzalez I, Asua JA, Leiza JR, Polymer, 48(9), 2542 (2007)
  9. Fernandez-Garcia M, Canamero PF, Fuente la de JL, React. Funct. Polym., 68, 1384 (2008)
  10. Chang ST, Chou PL, Polym. Degrad. Stab., 69, 355 (2000)
  11. Hwang HD, Choi JH, Moon JI, Kim HJ, Mokchae Konghak, 36, 121 (2008)
  12. Kim HJ, Korean Chem. Eng. Res., 47(3), 316 (2009)
  13. Jian Z, Yong H, Ming X, Jun N, Prog. Org. Coat, 66, 35 (2009)
  14. Palanisamy A, Rao BS, Prog. Org. Coat., 56, 297 (2006)
  15. Tasic S, Bozic B, Dunjic B, Prog. Org. Coat, 51, 321 (2004)
  16. Lim JK, Kim DK, Hwang JY, J. Korean Ind. Eng. Chem., 14(6), 818 (2003)
  17. Peng D, Zhang XH, Feng C, Lu GL, Zhang S, Huang XY, Polymer, 48(18), 5250 (2007)
  18. Kalal J, Svec F, Marousek V, J. Polym. Sci., 47, 155 (1974)
  19. Navarro-Rodrjguez D, Rodrjguez-Gonzqlez FJ, Romero-Garcia J, Jimenmz- Regaado EJ, Guillon D, Eur. Polym. J., 34, 1039 (1998)
  20. Nakamura Y, US Patent, No. 5,993,588 (1997)
  21. Schwalm R, Elesvier, Netherlands, 160-178 (2007)
  22. Safa KD, Nasirtabrizi MH, Polym. Bull., 57(3), 293 (2006)
  23. Choi YH, Kang JK, Lee WK, J. Adhes. Interface, 10, 1 (2009)
  24. Garay MT, Llamas MC, Iglesias E, Polymer, 38(20), 5091 (1997)
  25. Schwalm R, Hauβling L, Reich W, Beck E, Eeck P, Enenkl P, Menzel K, Prog. Org. Coat, 32, 191 (1997)
  26. Choi MH, Chung IJ, HWAHAK KONGHAK, 36(3), 399 (1998)