화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.1, 178-183, January, 2011
Enhanced adenosine triphosphate production by Saccharomyces cerevisiae using an efficient energy regeneration system
E-mail:
The process of ATP biosynthesis from adenosine catalyzed by Saccharomyces cerevisiae was studied using an efficient energy regeneration system. A fractional factorial design (2^(9-5)) was used to evaluate the effects of different components in the medium. Magnesium chloride, toluene, and acetaldehyde were found to significantly influence ATP production. The concentrations of the three factors were then optimized using central composition design and response surface analysis. Based on the second-order polynomial model obtained from the experiments, the optimal parameters were obtained as follows: adenosine 20 g/L; glucose 67 g/L; S. cerevisiae cells 250 g/L; magnesium chloride 4.37 g/L; potassium dihydrogen phosphate 67 g/L; toluene 1.40 mL/L; acetaldehyde 2.67 mL/L; pH 7.0; and temperature 37.0 ℃. Under the condition, the yield and concentration of ATP reached 97.5% and 37 g/L, respectively. The yield was nearly 10% higher than the level before optimization and the concentration increased two-fold. In addition, the utilization efficiency of energy after optimization increased nearly 6%.
  1. Lee HC, Lee SD, Sohng JK, Liou K, J. Biochem. Mol.Biol., 37, 503 (2004)
  2. Zhou JW, Liu LM, Shi ZP, Du GC, Chen J, Biotechnol.Adv., 27, 94 (2009)
  3. Larsson C, Nilsson A, Blomberg A, Gustafsson L, J. Bacteriol., 179, 7243 (1997)
  4. Hara KY, Shimodate N, Ito M, Baba T, Mori H, Metab. Eng., 11, 1 (2009)
  5. Larsson C, Pahlman IL, Gustafsson L, Yeast., 16, 797 (2000)
  6. Yuroff AS, Sabat G, Hickey WJ, Appl. Environ. Microbiol., 69, 7401 (2003)
  7. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Biochemistry., 40, 3016 (2001)
  8. Kipnis Y, Papo N, Haran G, Horovitz A, Proc. Natl. Acad. Sci.USA., 104, 3119 (2007)
  9. Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S, Nat. Biotechnol., 23, 975 (2005)
  10. Mendum ML, Smith LT, Appl. Environ. Microbiol., 68, 813 (2002)
  11. Tochikura T, J. Ferment. Technol., 45, 511 (1967)
  12. Kadowaki S, Yano T, Tachiki T, Tochikura T, J. Ferment.Bioeng., 68, 417 (1989)
  13. Asada M, Nakanishi K, Matsuno R, Kariya Y, Kimura A, Kamikubo T, Agric. Biol. Chem., 42, 1533 (1978)
  14. Shiomi N, Fukuda H, Murata K, Kimura A, Appl. Microbiol. Biotechnol., 42(5), 730 (1995)
  15. Shimosaka M, Fukuda Y, Kimura A, Agric. Biol. Chem., 45, 1025 (1981)
  16. Kimura A, Adv. Biochem. Eng./Biotechnol., 33, 29 (1986)
  17. Shimosaka M, Fukuda Y, Murata K, Kimura A, J. Bacteriol., 152, 98 (1982)
  18. Meikle AJ, Reed RH, Gadd GM, FEMS Microbiol. Lett., 62, 89 (1991)
  19. Li Y, Hugenholtz J, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 60(1-2), 101 (2002)
  20. Hua Q, Shimizu K, J. Biotechnol., 68, 135 (1999)
  21. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR, J. Bacteriol., 184, 3909 (2002)
  22. Liu LM, Chen J, Li HZ, Li Y, Prog. Biochem. Biophys., 32, 251 (2005)
  23. Liu LM, Li Y, Du GC, Chen J, J. Appl. Microbiol., 100(5), 1043 (2006)
  24. Liao X, Deng T, Zhu Y, Du G, Chen J, J. Appl. Microbiol., 104(2), 345 (2008)
  25. Henriksen CM, Christensen LH, Nielsen J, Villadsen J, J.Biotechnol., 45, 149 (1996)
  26. Candela T, Fouet A, Mol. Microbiol., 60, 1091 (2006)
  27. Blank LM, McLaughlin RL, Nielsen LK, Biotechnol. Bioeng., 90(6), 685 (2005)
  28. Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ, Bioresource Technol., 100, 919 (2009)
  29. Ying HJ, Chen XC, Cao HP, Xiong J, Hong Y, Bai JX, Li ZJ, Appl. Microbiol. Biotechnol., 84(4), 677 (2009)
  30. Montgomery DC, Runger GC, Hubele NF, Engineering statistics., John Wiley and Sons Inc., Hoboken, New Jersey (2001)
  31. Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364 (2009)
  32. Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
  33. Fujio T, Furuya A, Appl. Microbiol. Biotechnol., 21, 143 (1985)
  34. Fujio T, Furuya A, J. Ferment. Technol., 61, 261 (1983)
  35. Serrano R, Transport across yeast vacuolar and plasma membranes, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1991)
  36. Takeshige K, Ouchi K, J. Ferment. Bioeng., 79(1), 11 (1995)
  37. Stanley GA, Hobley TJ, Pamment NB, Biotechnol. Bioeng., 53(1), 71 (1997)
  38. Vriesekoop F, Barber AR, Pamment NB, Biotechnol. Lett., 29(7), 1099 (2007)
  39. Barber AR, Vriesekoop F, Pamment NB, Enzyme Microb. Technol., 30(2), 240 (2002)