화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.1, 1-15, January, 2011
Fundamentals of membrane transport
E-mail:
A review is presented to give a generalized membrane transport theory based on the principles of nonequilibrium thermodynamics. This theory is then used to develop specific flux equations for gas separation, pervaporation, osmosis, reverse osmosis, nanofiltration, ultrafiltration, microfiltration, dialysis, and electrodialysis. All membrane processes suffer from boundary layer mass transfer resistances caused by concentration polarization. The convective motions parallel and perpendicular to the membrane surface are distinguishable, and the former becomes more relevant than the latter in the boundary layer mass transfer. The modified Peclet number is introduced and its importance is discussed in characterizing the boundary layer mass transfers of various membrane processes. Many different transport mechanisms through membrane itself are reviewed including the solution-diffusion model, pore model, permeation through composite membranes, and transport through inorganic membranes. Finally, the differences between membrane mass transfer and other mass transfer are delineated, including a discussion of negative mass transfer coefficient.
  1. Hwang ST, AIChE J., 50(4), 862 (2004)
  2. Barrer R, Diffusion in and through Solids., Press, London, 144 (1951)
  3. Hwang ST, Kammermeyer K, Techniques of chemistry, VII:Membranes in separations, Wiley Interscience: New York, 92(a),204(b) (1975)
  4. Hamakawa S, Hibino T, Iwahara H, J. Electrochem. Soc., 14, 1720 (1994)
  5. Qi XW, Lin YS, Solid State Ion., 130(1-2), 149 (2000)
  6. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N, Chem. Lett., 1745 (1985)
  7. Teraoka Y, Nobunaga T, Yamazoe N, Chem. Lett., 503 (1988)
  8. Kruidhof H, Bouwmeester HJM, v. Doorn RHE, Burggraaf AJ, Solid State Ionics., 63-65B, 816 (1993)
  9. Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ, Solid State Ion., 76(3-4), 321 (1995)
  10. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ, J. Electrochem. Soc., 143(9), 2722 (1996)
  11. Qi XW, Lin YS, Swartz SL, Ind. Eng. Chem. Res., 39(3), 646 (2000)
  12. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena., Wiley, New York, 537 (2002)
  13. Onsager L, Phys. Rev., 37, 405 (1931)
  14. Onsager L, Phys. Rev., 38, 2265 (1931)
  15. De Groot SR, Mazur P, Non-Equilibrium Thermodynamics., Interscience Publishers, Inc., New York, 20 (1962)
  16. Fitts DD, Nonequilibrium Thermodynamics., McGraw-Hill: New York, 9 (1962)
  17. Katchalsky A, Curran PF, Nonequilibrium thermodynamics., Harvard University Press: Cambridge, MA, 113 (1975)
  18. Narebska A, Warszawski A, J. Membr. Sci., 88(2-3), 167 (1994)
  19. Kedem O, J. Membrane Sci., 47, 277 (1989)
  20. Johnson DW, Semmens MJ, Gulliver JS, J. Membr. Sci., 128(1), 67 (1997)
  21. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
  22. Mi LX, Hwang ST, J. Membr. Sci., 159(1-2), 143 (1999)
  23. Bhattacharya S, Hwang ST, J. Membr. Sci., 132(1), 73 (1997)
  24. Lee SJ, Yang SM, Park SB, J. Membr. Sci., 96(3), 223 (1994)
  25. Srinivasan R, Auvil SR, Burban PM, J. Membr. Sci., 86(1-2), 67 (1994)
  26. Yamasaki A, Inoue H, J. Membrane Sci., 59, 233 (1991)
  27. Hwang ST, Kammermeyer K, Can. J. Chem. Eng., 44(2), 82 (1966)
  28. Hwang ST, Kammermeyer K, Separation Sci., 1(5), 629 (1966)
  29. Hwang ST, Kammermeyer K, Separation Sci., 2(4), 555 (1967)
  30. Hwang ST, AIChE J., 14, 809 (1968)
  31. Hwang ST, Separation Sci., 11(1), 17 (1976)
  32. Rhim H, Hwang ST, The Physics of Fluid., 19, 1319 (1976)
  33. Kaneko K, J. Membr. Sci., 96(1-2), 59 (1994)
  34. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membrane Sci., 66, 271 (1992)
  35. Shelekhin AB, Grosgogeat EJ, Hwang ST, J. Membrane Sci., 66, 129 (1992)
  36. Li D, Hwang ST, J. Membrane Sci., 59, 331 (1991)
  37. Ohya H, Nakajima H, Togami N, Aihara M, Negishi Y, J. Membr. Sci., 97, 91 (1994)
  38. Li D, Hwang ST, J. Membrane Sci., 66, 119 (1992)
  39. Rhim H, Hwang ST, J. Colloid Interf. Sci., 52(1), 174 (1975)
  40. Lee KH, Hwang ST, J. Colloid Interf. Sci., 110(2), 544 (1986)
  41. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membrane Sci., 66, 259 (1992)
  42. Elkamel A, Noble RD, J. Membrane Sci., 65, 163 (1992)
  43. Qiu MM, Hwang ST, J. Membrane Sci., 59, 53 (1991)
  44. Paul DR, Koros WJ, J. Polym. Sci., Polym. Phys. Ed., 14, 675 (1976)
  45. Paul DR, Ber. Bunsenges. Phys. Chem., 83, 294 (1979)
  46. Koros WJ, Paul DR, Huvard GS, Polymer., 20, 956 (1979)
  47. Petropoulos JH, J. Polym. Sci., Part A-2., 8, 1979 (1970)
  48. Mehta GD, Morse TF, Mason EA, Daneshpajooh MH, J.Chem. Phys., 64, 3917 (1976)
  49. Mason EA, Viehland LA, J. Chem. Phys., 68, 3562 (1978)
  50. Mason EA, Malinauskas AP, Gas transport in porous media:The dusty-gas model., Elsevier, Amsterdam (1983)
  51. Mason EA, Lonsdale HK, J. Membrane Sci., 51, 1 (1990)
  52. Datta R, Dechapanichkul S, Kim JS, Fang LY, Uehara HA, J. Membrane Sci., 75, 245 (1992)
  53. Merten U, (Ed.) Desalination by reverse osmosis, MIT Press: Cambridge, MA (1966)
  54. Merten U, Ind. Eng. Chem. Fundam., 2, 229 (1963)
  55. Lonsdale HK, Merten U, Riley RL, J. Appl. Polym. Sci., 9, 1341 (1965)
  56. Lonsdale HK, Merten U, Tagami M, J. Appl. Polym. Sci., 11, 1807 (1967)
  57. Barrer RM, “Diffusion and permeation in heterogeneous media,” in Crank J and Park GS (Eds.), Diffusion in Polymers, Academic Press, New York, 165 (1968)
  58. Hwang ST, Macromol. Symp., 118, 407 (1997)