화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.6, 680-683, December, 2010
자동차용 팰트로부터 방출되는 휘발성 유기화합물의 저감 연구
Reduction of Volatile Organic Compounds Emitted from Automobile Felt by Activated Carbon and Hollow Core/Mesoporous Shell Carbon Ball
E-mail:
초록
나노카본볼과 활성탄을 혼합하여 자동차용 팰트에서 발생하는 휘발성유기화합물의 흡착성능을 시험하였다. 자동차에서 발생하는 휘발성유기화합물의 양을 측정하는 최적의 분석방법으로 고성능 액체크로마토그래피와 가스크로마토그래피를 활용하였다. 새로 생산된 팰트에서는 포름알데히드가 0.3∼6.0 ppm 존재하였으나 상온에서 14일 동안 숙성시키면 0.2∼0.5 ppm으로 감소하였고, 아세트알데히드도 0.2∼3.0 ppm에서 0.2∼0.4 ppm으로 감소하였다. 새로 생산된 팰트에서 발생되는 총 휘발성유기화합물은 8.49 μg/TP로 일본자동차협회의 허용치에 비하여 약 26배나 높게 관측되었으나, 나노카본볼과 활성탄 혼합물 0.2 wt%를 팰트에 첨가시키면 0.32 μg/TP 이하로 저감할 수 있었다.
Nano carbon balls (NCBs), activated carbons (ACs) and their mixture (new carbon mixtures, NCMs) were used to reduce volatile organic compounds (VOCs) emitted from the automobile felt. The optimum analytical method to measure the trace amount of the VOCs, including formaldehyde and acetaldehyde, has been established by utilizing high performance liquid chromatography (HPLC) and gas chromatography (GC). The levels of formaldehyde and acetaldehyde released from newly produced felt were in the ranges of 0.3∼6.0 ppm and 0.2∼3.0 ppm, respectively. After 14 days of aging at the room temperature, however, their levels were still in the ranges of 0.2∼0.5 ppm and 0.2∼0.4 ppm, respectively. By applying NCMs of 2 wt% to the automobile felt, the amount of the total volatile organic compounds (TVOCs) was reduced under the chronic inhalation minimum risk level of 0.32 μg/TP.
  1. Foster KL, Fuerman RG, Economy J, Larson SM, Rood MJ, Chem. Mater., 4, 1068 (1992)
  2. Guerrero RS, Sayari A, Environ. Sci. Technol., 41, 4761 (2007)
  3. Davis ME, Blicharz AP, Hart JE, Laden F, Garshick E, Smith TJ, Environ. Sci. Technol., 41, 7152 (2007)
  4. Schupp T, Bolt HM, Hengstler JG, Toxicology., 206, 461 (2005)
  5. Amoore JE, Hautala E, J. Appl. Toxicol., 3, 272 (1983)
  6. Krzyzanowski M, Quackenboss JJ, Lebowitz MD, Environ.Res., 52, 117 (1990)
  7. Tam BN, Neumann CM, J. Environ. Manage., 73, 131 (2004)
  8. JAMA Press Releases (http://www.jama-english.jp), March 31 (2006)
  9. Hayashi T, Kumita M, Otani Y, J. Chem. Eng., Jpn., 32, 72 (2006)
  10. Hayashi T, Kumita M, Otani Y, Environ. Sci. Technol., 39, 5436 (2005)
  11. Sugiura M, Fukumoto K, J. Mater. Sci., 29(3), 682 (1994)
  12. Li J, Li Z, Liu B, Xia QB, Xi HX, Chin. J. Chem. Eng., 16(6), 871 (2008)
  13. Ozturk N, Bektas TM, J. Hazard. Mater. B., 12, 1555 (2004)
  14. Zhao XS, Ma Q, Lu GQM, Energy Fuels, 12(6), 1051 (1998)
  15. Carlos-Cuellar S, Li P, Christensen AP, Krueger BJ, Burrichter C, Grassian VH, J. Phys. Chem. A., 107, 2350 (2003)
  16. Cal MP, Rood MJ, Larson SM, Energy Fuels, 11(2), 311 (1997)
  17. Stein A, Wang Z, Fierke MA, Adv. Mater., 20, 1 (2008)
  18. Kosuge K, Kubo S, Kikukawa N, Takemori M, Langmuir, 23(6), 3095 (2007)
  19. Yang J, Zhuang TT, Wei F, Zhou Y, Cao Y, Wu ZY, Zhu JH, Liu C, J. Hazard. Mater., 162(2-3), 866 (2009)
  20. Lee SO, Kitchin SJ, Harris KDM, Sankar G, Dugal M, Thomas JM, J. Phys. Chem. B, 106(6), 1322 (2002)
  21. Yoon SB, Sohn K, Kim JY, Shin CH, Yu JS, Hyeon T, Adv. Mater., 14(1), 19 (2002)
  22. Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS, J. Mater. Chem., 17, 1758 (2007)
  23. Kim Y, Yoon SB, Yu JS, Chem. Commun., 21, 790 (2003)
  24. Lee JK, Han SY, Park SK, Park YK, Lee CW, Korean J. Chem. Eng., 22(1), 42 (2005)