화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.5, 590-592, October, 2010
K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가
Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics
E-mail:
초록
본 연구에서는 리튬 2차 전지의 양극물질 중 하나인 Li-Mn spinel (LiMn2O4)을 합성하기 위해 전구체로 K-Birnessite (KxMnO2ㆍyH2O)를 이용하였다. K-Birnessite는 과망간산칼륨[KMnO4]과 우레아[CO(NH2)2]를 사용하여 수열합성법으로 합성하였고, K-Birnessite와 LiOH를 수열 반응시켜 Li-Mn spinel 나노입자를 제조하였다. 리튬함량에 따른 Li-Mn spinel 의 구조 및 형상 변화와 전기화학적 특성에 대한 경향성을 알아보기 위해 LiOH와 K-Birnessite의 몰 비를 조절하여 Li-Mn spinel를 합성하였다. 합성된 분말은 X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetry (TG)를 이용하여 물질의 구조 및 형상을 분석하였고, 정전류법으로 양극재의 용량과 율 특성을 비교 분석하였다. 그 결과 LiOH/K-Birnessite의 몰 비가 0.8일 때 가장 큰 용량(117 mAhg-1)을 나타냈고, 몰 비가 증가할수록 Li-Mn spinel 중 리튬함량이 증가하여 용량은 감소하였으나, 입자 크기는 작아져서 율 특성은 점점 향상되는 경향을 보였다.
Li-Mn spinel (LiMn2O4) is prepared by a hydrothermal process with K-Birnessite (KxMnO2ㆍyH2O) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [KMnO4] and urea [CO(NH2)2] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of 117 mAhg-1 when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.
  1. Tao L, Weihua Q, Hailei Z, Jingjing L, Mater. Lett., 60, 1251 (2006)
  2. Tian L, Yuan AB, J. Power Sources, 192(2), 693 (2009)
  3. Jiang LH, J. Power Sources, 172, 401 (2007)
  4. Gao L, Fei L, Zheng H, Mater. Lett., 61, 1785 (2007)
  5. Zhu HT, Luo J, Yang HX, Liang JK, Rao GH, Li JB, Du ZM, J. Phys. Chem. C, 112, 17089 (2008)
  6. Lee YS, Sun YK, Nahm KS, Solid State Ion., 109(3-4), 285 (1998)
  7. Lu CH, Lin SW, J. Power Sources, 97, 458 (2001)