화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.392, No.4, 567-571, 2010
Rescue of ER oxidoreductase function through polyphenolic phytochemical intervention: Implications for subcellular traffic and neurodegenerative disorders
Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone that catalyzes maturation of disulfide-bond-containing proteins is involved in the pathogenesis of both Parkinson's (PD) and Alzheimer's (AD) diseases. S-nitrosylation of PDI cysteines due to nitrosative stress is associated with cytosolic debris accumulation and Lewy-body aggregates in PD and AD brains. We demonstrate that the polyphenolic phytochemicals curcumin and masoprocol can rescue PDI from becoming S-nitrosylated and maintain its catalytic function under conditions mimicking nitrosative stress by forming stable NOx adducts. Furthermore, both polyphenols intervene to prevent the formation of PDI-resistant polymeric misfolded protein forms that accumulate upon exposure to oxidative stress. Our study suggests that curcumin and masoprocol can serve as lead-candidate prophylactics for reactive oxygen species induced chaperone damage, protein misfolding and neurodegenerative disease; importantly, they can play a vital role in sustaining traffic along the ER's secretory pathway by preserving functional integrity of PDI. (C) 2010 Elsevier Inc. All rights reserved.