화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.392, No.4, 490-494, 2010
Ankyrin recognizes both surface character and shape of the 14-15 di-repeat of beta-spectrin
The spectrin-based cytoskeleton is critical for cell stability, membrane organization and membrane protein trafficking. At its core is the high-affinity complex between beta-spectrin and ankyrin. Defects in either of these proteins may cause hemolytic disease, developmental disorders, neurologic disease, and cancer. Crystal structures of the minimal recognition motifs of ankyrin and beta-spectrin have been determined and distinct recognition mechanisms proposed. One focused on the complementary surface charges of the minimal recognition motifs, whereas the other identified an unusual kink between beta-spectrin repeats and suggested a conformation-sensitive binding surface. Using isothermal titration calorimetry and site-directed mutagenesis, we demonstrate the primacy of the inter-repeat kink as the critical determinant underlying spectrin's ankyrin affinity. The clinical implications of this are discussed in light of recognized linker mutations and polymorphisms in the beta-spectrins. (C) 2010 Elsevier Inc. All rights reserved.