화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.86, No.1, 295-303, 2010
Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp CGMCC2428
Welan gum is a microbial polysaccharide produced by Alcaligenes sp. CGMCC2428 that has d-glucose, d-glucuronic acid, d-glucose, and l-rhamnose as the main structural unit. The biosynthetic pathway of sugar nucleotides essential for producing welan gum in this strain was established in the following ways: (1) the detection of the presence of several intermediates and key enzymes; (2) the analysis of the response upon addition of precursors to the culture medium; (3) the correlation of the activities between several key enzymes with the yields of welan gum. With addition of 200-mu M glucose-6-phosphate and fructose-6-phosphate, the production of welan gum was improved by 18%. The activities of phosphoglucomutase, phosphomannose isomerase, UDP-glucose pyrophosphorylase, and dTDP-glucose pyrophosphorylase, correlated well with the yields of welan gum. According to these findings, the biosynthetic pathway was proposed to involve the metabolism of glucose via two discrete systems. The first involves conversion of glucose to glucose-6-phosphate, with further reactions producing glucose-1-phosphate and fructose-6-phosphate, which are metabolized to the nucleotide sugar precursors of welan gum. The second system involves metabolism of glucose to synthesize the basic structural skeleton of the cell via central metabolic pathways, including the Entner-Doudoroff pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle.