화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.5, 474-479, September, 2010
케라틴/PLGA 복합체 필름의 적층 원통형 지지체가 섬유륜 재생에 미치는 영향
Effects of Laminated Cylindrical Scaffolds of Keratin/Poly(lactic-co-glycolic acid) Hybrid Film on Annulus Fibrous Tissue Regeneration
E-mail:
초록
조직공학에 이용되는 고분자인 poly(lactic-co-glycolic acid)(PLGA)는 높은 생체적합성 및 생분해성의 장점을 지니지만, 생체활성물질의 결여와 소수성으로 인해 세포의 부착에 어려움을 가진다. 또한 PLGA의 가수분해 과정 중 생성되는 산 분해물이 조직주변의 pH를 감소시켜 염증을 유발하는 단점을 가지고 있다. 따라서 이러한 단점을 보완하기 위한 방법으로 천연고분자인 케라틴을 첨가한 PLGA필름을 제작하였으며 조직공학적 디스크재생에 응용하기 위하여 케라틴/PLGA 복합체필름의 원통형 지지체를 제작하였다. 이 원통형 지지체의 내부는 케라틴/PLGA 필름을 말아서 사용하였으며 외부는 PLGA 다공성 지지체 링을 제작하여 사용하였다. 본 연구에서는 이 지지체에 섬유륜세포를 파종하여 PLGA 필름과 케라틴/PLGA 필름을 이용한 원통형 지지체에서의 세포의 부착 및 생존율을 비교하고 케라틴을 첨가한 지지체의 우수성을 확인하였으며 강도의 우수성 또한 확인하였다. 이 결과는 디스크재생을 위한 지지체의 연구에 유용한 정보를 제공할 것이다.
We developed laminated cylindrical scaffolds composed of poly(lactide-co-glycolide)(PLGA) and keratin, and investigated their potential for tissue engineering and disk regeneration. The scaffold was designed to have two parts, i.e. inner cylinder and outer disk, to mimic a natural disk. The outer disk was composed of PLGA and the inner cylinder was prepared using PLGA film or PLGA/keratin hybrid film. In this study, we investigated the effects of keratin on the growth and proliferation of annulus fibrous(AF) cells in the cylindrical scaffolds. Scaffolds containing PLGA/keratin films showed a significantly higher cell proliferation and expression of collagen I and II than the counterpart with PLGA films. Keratin containing scaffolds also exhibited an excellent mechanical strength, demonstrating that keratin influences the proliferation of annulus fibrous cells. The results provide valuable information on PLGA/keratin films for tissue engineered disk regeneration.
  1. Bibby SR, Jones DA, Lee RB, Jing Y, Urban JP, Joint Bone Spine, 68, 537 (2001)
  2. Bogduk N, “The inter-body joints and the intervertebral disc”, in Clinical Anatomy of the Lumbar Spine and Sacrum, Bogduk N, Editor, New York, Churchill Livingstone, p 13 (1997)
  3. Kim SH, Yun SJ, Jang JW, Kim MS, Khang G, Lee HB, Polym.(Korea), 30(1), 14 (2006)
  4. Khang G, Lee SJ, Lee HB, “Polymer-cell intertaction”; in Tissue Engineering: Concepts and Application, 2nd Eds., J. J. Yoo and I. Lee, Editors, Korea Med. Pub. 2nd Eds., Yoo JJ, Lee I, Editors, Korea Med. Pub. (2002)
  5. Park IK, Oh SH, Lee JH, Tissue Eng. Regen. Med., 1, 164 (2004)
  6. Jang WY, Kim SH, Lee I, Lee HB, Khang G, Tissue Eng. Regen. Med., 2, 100 (2005)
  7. Khang G, Jeon EK, Rhee JM, Lee I, Lee SJ, Lee HB, Macromol. Res., 11(5), 334 (2003)
  8. Khang G, Kim MS, Min BH, Lee I, Rhee JM, Lee HB, Tissue Eng. Regen. Med., 3, 376 (2006)
  9. Bostman O, J. Bone Joint Surg. Am., 73, 148 (1991)
  10. Taylor MS, Daniels AU, Andriano KP, Heller J, J. Appl. Biomater., 5, 151 (1994)
  11. Klompmaker J, Jansen HW, Veth RP, Groot JH, Nijenhuis AJ, Pennings AJ, Biomaterials, 12, 810 (1991)
  12. Iwasaki Y, Sawada S, Nakabayashi N, Khang G, Lee HB, Biomaterials, 23, 3897 (2002)
  13. Yoon SJ, Kim SH, Ha HJ, Ko YK, So JW, Kim MS, Young Y, Khang G, Rhee JM, Lee HB, Tissue Enigneering Part A, 14, 539 (2008)
  14. Choi BS, Kim SH, Yun SJ, Ha HJ, Kim MS, Yang YI, Son Y, Khang G, Rhee JM, Lee HB, Tissue Eng. Regen. Med., 3, 295 (2006)
  15. Hong HH, Kim SJ, Kim SH, Kim HL, Park JH, Lee D, Rhee JM, Khang G, Tissue Eng. Regen. Med., 6, 711 (2009)
  16. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB, Biomaterials, 28, 5137 (2007)
  17. Wen F, Chang S, Toh YC, Teoh SH, Yu H, Mater. Sci. Eng., 27, 285 (2007)
  18. Dowling LM, Crewther WG, Parry DAD, Biochem. J., 236, 705 (1986)
  19. Toshizumi T, Naoya O, Akira T, Kiyoshi Y, Biomaterials, 23, 817 (2002)
  20. Sierpinskia P, Garrettb J, Mab J, Apelb P, Kloriga D, Smithb T, Komanb LA, Atala A, Dykea MV, Biomaterials, 29, 118 (2008)
  21. Stenn KS, Prouty SM, Seiberg M, J. Dermatol. Sci., 7, 109 (1994)
  22. Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K, Biotech., 93, 165 (2002)
  23. Kazunori K, Toshizumi T, Kiyoshi Y, Biomaterials, 25, 4255 (2004)