화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.4, 357-362, July, 2010
젤 고분자 전해질의 전기화학적 특성에 대한 단량체 및 개시제의 영향
Effect of Monomers and Initiators on Electrochemical Properties of Gel Polymer Electrolytes
E-mail:
초록
Poly(ethyleneglycol diacrylate)(PEGDA) 혹은 2-ethylhexyl acrylate(2EHA)를 기반으로 하는 고체함 량 8∼54 wt%의 젤 고분자 전해질(GPE)을 합성하여 상온 이온전도도 및 전기화학적 특성을 평가하였다. 그 결과 투명하고 균일한 젤을 형성하는 21 wt%의 PEGDA계에서 1×10^(-3) S/cm 이상의 높은 상온 이온전도도를 얻을 수 있었다. 하지만 GPE는 액체전해액에 비해 낮은 전압안정성을 보여주었는데, 고분자 합성과정에서 개시제인 AIBN에 원인이 있음을 제안하였다. 그 결과 BPO를 개시제로 사용하여 전압안정성이 향상된 GPE를 확보할 수 있었다. 또한 음극에서 리튬이온의 삽입과 탈리가 용이하면서 환원분해전위에 안정한 계면피막이 형성되었음을 확인하였다.
Poly(ethyleneglycol diacrylate)(PEGDA) or 2-ethylhexyl acrylate(2EHA)-based gel polymer electrolytes(GPEs) which have a solid content in the range of 8∼54 wt% were synthesized and their ionic conductivity and electrochemical properties were measured at room temperature. It was observed that the ionic conductivity over 1×10^(-3) S/cm was obtained in a homogeneous PEGDA-based GPE with 21 wt% of solid content. However the electrochemical stability of the GPE was lower than that of a liquid electrolyte. The presence of AIBN initiator which can produce a N2 gas during polymerization process might be the reason of this low oxidation decomposition potential. As an alternative, benzoyl peroxide was used as an initiator and GPE with enhanced electrochemical stability was obtained. Finally, the formation of stable solid electrolyte interphase on a graphite anode was evidenced by cyclic voltammetry measurement.
  1. Yoshino A, Lithium-ion these 15 years and emerging technologies, CMC, Tokyo (2008)
  2. Kanamura K, Development and research on next generation-materials for lithium-ion rechargeable battery for automotive application, CMC, Tokyo (2008)
  3. Nazri GA, Pistoia G, Lithium batteries science and technology, Kluwer Academic Publishers, New York (2004)
  4. Sato N, Yoshino A, Safety technologies and materials for lithium-ion batteries, CMC, Tokyo (2009)
  5. Yamada A, Takei Y, Koizumi H, Sonoyama S, Kanno R, Chem. Mater., 18, 804 (2006)
  6. Yang Y, Liao XZ, Ma ZF, Wang BF, Hea L, He YS, Electrochem. Commun., 11, 1277 (2009)
  7. Zheng JC, Li XH, Wang ZX, Guo HJ, Zhou SY, J. Power Sources, 184(2), 574 (2008)
  8. Zhang SS, Xu K, Jow TR, J. Power Sources, 140(2), 361 (2005)
  9. Eo SM, Cha E, Kim DW, J. Power Sources, 189(1), 766 (2009)
  10. Zhang SS, Xu K, Jow TR, J. Power Sources, 140(2), 361 (2005)
  11. Arai J, J. Appl. Electrochem., 32, 1071 (2003)
  12. Arai J, J. Power Sources, 119, 388 (2003)
  13. Garcia B, Lavallee S, Perron G, Michot C, Armand M, Electrochim. Acta, 49(26), 4583 (2004)
  14. Sakaebe H, Matsumoto H, Electrochem. Commun., 5, 594 (2003)
  15. Appetecchi GB, Croce F, Moyroud E, Scrosati B, J. Appl. Electrochem., 25(10), 987 (1995)
  16. Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
  17. Ryu SW, Song EH, Polym.(Korea), 32(1), 85 (2008)
  18. Wang YJ, Kim D, J. Power Sources, 166(1), 202 (2007)
  19. Sivakumar M, Subadevi R, Rajendran S, Wu HC, Wu NL, Eur. Polym. J., 43, 4466 (2007)
  20. Zhang SS, Liu QG, Yang LL, Polymer, 35(17), 3740 (1994)
  21. Balbuena P, Wang Y, Lithium-ion Batteries Solid-Electrolyte Interphase, Imperial College Press, London (2004)
  22. Murata K, Electrochim. Acta, 40(13-14), 2177 (1995)