화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.2, 183-187, April, 2010
과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향
Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons
E-mail:
초록
본 연구에서 H2O2에 의한 pitch의 산화처리가 KOH 활성화에 미치는 영향에 관하여 고찰하였다. 산화 처리의 영향을 고려하기 위하여 KOH/pitch 중량비를 3으로 고정하였으며, 1073 K에서 2 h 동안 활성화하였고, H2O2의 농도를 각각 5, 15, 25 wt%로 달리하여 시편을 제조하였다. 산화처리된 pitch와 이를 전구체로 하여 제조한 활성탄소의 물리화학적 특성은 XRD, FT-IR, XPS, N2 흡착 및 SEM을 이용하여 분석하였다. XRD 결과로부터 H2O2 처리가 (002) 면의 층간거리를 증가시켰으며, FT-IR과 XPS로부터 표면의 carboxyl group 및 hydroxyl group 등의 산소 작용기가 도입되었음을 확인하였다. Pitch로 제조된 활성탄소의 비표면적은 H2O2 산화처리에 의해 급격히 상승하였고, H2O2의 농도를 증가시킬수록 상승폭이 더욱 증가하여 25 wt% H2O2 처리시 최대 2111 m2/g의 비표면적을 갖는 활성탄소를 제조할 수 있었다.
Activated carbons (ACs) have been prepared from pitch by the combination of a chemical oxidation with different H2O2 concentrations i.e., 5, 15, and 25 wt% and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The influence of H2O2 solution on the microporous properties of the pitch and the final activated carbons were invested using XRD, FT-IR, XPS, N2-adsorption, and SEM. XRD indicated that the value of interplanar distance d002 increased by chemical oxidation. FT-IR and XPS results showed that the chemical oxidation promoted the formation of surface oxygen functionalities. Also, the specific surface area of the resulting ACs was increased with increasing the concentration of H2O2 chemical oxidation and showed a maximum value of 2111 m2/g at 25 wt% H2O2 concentration.
  1. Feaver A, Cao GZ, Carbon, 44, 570 (2006)
  2. Bashkova S, Baker FS, Wu XX, Armstrong TR, Schwartz V, Carbon, 45, 1354 (2007)
  3. Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458 (2002)
  4. Um EH, Lee CT, J. Korean Ind. Eng. Chem., 20(4), 396 (2009)
  5. Kim KJ, Ahn HG, J. Korean Ind. Eng. Chem., 19(4), 445 (2008)
  6. Liu CJ, Liang XY, Liu XJ, Wang Q, Teng N, Zhan L, Zhang R, Qiao WM, Ling LC, Appl. Surf. Sci., 254(9), 2659 (2008)
  7. Park SJ, Jung WY, J. Colloid Interface Sci., 250(1), 93 (2002)
  8. Chingombe P, Saha B, Wakeman RJ, Carbon, 43, 3132 (2005)
  9. Park SJ, Kim KD, Carbon, 39, 1741 (2001)
  10. Lee SB, Hong IK, J. Korean Ind. Eng. Chem., 19(4), 439 (2008)
  11. Yang T, Lua AC, Micropor. Mesopor. Mater., 63, 113 (2003)
  12. Ferro V, Torne-Fernandez V, Celzard A, Micropor. Mesopor. Mater., 101, 419 (2007)
  13. Hwang HR, Choi WJ, Kim TJ, Kim JS, Oh KJ, J. Anal. Appl. Pyrolysis, 83, 220 (2008)
  14. Vilaplana-Ortego E, Lillo-Rodenas MA, Alcan.iz-Monge J, Carzorla-Amoros D, Linares-Solano A, Carbon, 47, 2112 (2009)
  15. Cheng XL, Zha QF, Li XJ, Yang XJ, Fuel Process. Technol., 89(12), 1436 (2008)
  16. Xing W, Yan ZF, New Carbon Mater., 17, 25 (2002)
  17. Guo CY, Wang CY, Micropor. Mesopor. Mater., 102, 337 (2007)
  18. Ganan-Gomez J, Macias-Garcia A, Diaz-Diez MA, Gonzalez-Garcia C, Sabio-Rey E, Appl. Surf. Sci., 252(17), 5976 (2006)
  19. Kim IJ, Yang S, Jeon MJ, Moon SI, Kim HS, J. Korean Ind. Eng. Chem., 19(4), 407 (2008)
  20. Short MA, Walker PL, Carbon, 1, 3 (1963)
  21. Starck J, Burg P, Muller S, Bimer J, Furdin G, Fioux P, Carbon, 44, 2457 (2006)
  22. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  23. Park SJ, Jin SY, Kawasaki J, J. Korean Ind. Eng. Chem., 14(8), 1111 (2003)
  24. Chan BK, Thomas KM, Marsh H, Carbon, 31, 1071 (1993)