화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.6, 663-669, December, 2009
NaX 제올라이트가 담지된 허니컴 흡착제의 제조 및 이의 이산화탄소 흡착특성
Preparation of NaX Zeolite Coated Honeycomb Adsorbents and It’s Carbon Dioxide Adsorption Characteristics
E-mail:
초록
지구온난화에 가장 큰 영향을 미치는 이산화탄소를 연소 후 배가스로부터 흡착 분리하기 위한 허니컴 흡착소자의 제조 및 그 특성에 관한 것이다. 고온사용이 가능하도록 세라믹쉬트, 활성탄소 쉬트를 사용하여 허니컴을 제조하였고 그 위에 Na-X 제올라이트를 코팅하였다. 또한 Na-X 제올라이트를 포함시킨 제올라이트 쉬트를 사용하여 허니컴 흡착제를 제조하였다. 이들 세 가지 허니컴 흡착제에 대하여 이산화탄소 흡착량, 표면특성 그리고 16% 이산화탄소 혼합가스를 공급하여 파과특성을 분석하였다. 또한 가열재생에 따른 이산화탄소 농축특성과 가열시 허니컴 흡착제의 온도변화를 분석하여 열스윙 흡착 분리공정에서의 우월성을 비교 분석하였다. 이들 허니컴을 사용한 흡착파과실험 결과를 바탕으로 하여 회전식 흡착 농축공정의 적용 가능예를 보여주었다.
The honeycomb adsorbent was prepared for adsorbing and separating carbon dioxide from combustion exhaust gas, which had deep impact on climate change, and the characteristics of the adsorbent were studied. Na-X zeolite was coated on a honeycomb prepared with ceramic sheet or active carbon sheet so that the two honycomb can be used at high temperature. Third honeycomb adsorbent was prepared by using zeolite sheet, which contained zeolite as component. The steady-state adsorption properties and surface morphologies were analyzed and breakthrough characteristics were ananlyzed by providing 16% carbon dioxide mixed gas. By thermal regeneration, carbon dioxide concentration properties were analyzed, and the adsorptive separation process was compared between thermal swing adsorption and pressure swing adsorption after adsorbent temperature change during heating. The breakthrough results of the honeycomb showed possibility of rotary adsorptive concentration process.
  1. Tlili N, Grevillot G, Vallieres C, International J. of Greenhouse Gas Control, 3, 519 (2009)
  2. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
  3. Gomes VG, Yee KWK, Sep. Purif. Technol., 28(2), 161 (2002)
  4. Park JH, Beum HT, Kim JN, Cho SH, Ind. Eng. Chem. Res., 41(16), 4122 (2002)
  5. Ishibashi M, Ota H, Akutsu N, Umeda S, Energy Conv. Manag., 37, 929 (1996)
  6. Zhao Z, Cui X, Ma J, Li R, International J. of Greenhouse Gas Control, 1, 355 (2007)
  7. Zhang J, Singh R, Webley PA, Microporous and Mesoporous Mater., 111, 478 (2008)
  8. Ridha FN, Webley PA, Sep. Purif. Technol., 67(3), 336 (2009)
  9. Harlick PJ, Tezel FH, Microporous and Mesoporous Mater., 76, 71 (2004)
  10. Walton KS, Abney MB, LeVant MD, Microporous and Mesoporous Mater., 91, 78 (2006)
  11. Wirawan SK, Creaser D, Microporous and Mesoporous Mater., 91, 196 (2006)
  12. Knowles GP, Graham JV, Delaney SW, Chaffee AL, Fuel Process. Technol., 86(14-15), 1435 (2005)
  13. Chaffee AL, Fuel Process. Technol., 86(14-15), 1473 (2005)
  14. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Microporous and Mesoporous Mater., 62, 29 (2003)
  15. Xu XC, Song CS, Miller BG, Scaroni AW, Fuel Process. Technol., 86(14-15), 1457 (2005)
  16. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86, 22 (2007)
  17. Coutinho D, Balkus KJ, Microporous and Mesoporous Mater., 52, 79 (2002)
  18. Yoo YJ, Kim HS, Han MH, Jang GI, J. Kor. Ceram. Soc., 39, 1035 (2002)
  19. Yoo YJ, Kim HS, Han MH, Sep. Sci. Technol., 40(8), 1635 (2005)
  20. Zamaro JM, Ulla MA, Miro EE, Chem. Eng. J., 106(1), 25 (2005)