화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.1, 178-182, 2009
Electron emission studies of CNTs grown on Ti and Ni containing amorphous carbon nanocomposite films
Carbon nanotubes (CNTs) were grown successfully on the as-deposited dual metal (Ti and Ni) embedded films using a radio frequency plasma-enhanced chemical vapor deposition system. The microstructure of CNTs grown on the dual metal films proved to be heavily dependent on the percentages of metals included, varying both in size and in density. Electron emission tests carried out on the films with CNTs grown showed that the threshold field was dependent on the surface morphology of the CNTs, with the lowest threshold field at 3.5 V/mu m from 2.5% Ti/Ni film with CNTs. The field enhancement factor, beta, of the emitting tips was also calculated from the Fowler-Nordheim plots, where CNTs from the 2.5% Ti/Ni film gave the highest field enhancement factor. However, it was observed that films with a single metal of either Ti or Ni did notmanage to grow CNTs, possibly due to a lack of catalyst centres at the surface of the films. It was believed that the Ni nanoclusters acted as catalysts centres giving a rather uniform but randomly orientated type of CNTs. Results obtained pointed that the fabricated nanocomposite material could be a possible choice for cold cathode emitters and the Ti/Ni mixture could be an effective composite for controlling the CNT density. (C) 2009 Elsevier B.V. All rights reserved.