화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.5, 645-648, September, 2009
Synthesis of nanometer-sized hexagonal disk-shaped ZnO in formic acid using a hydrothermal method and its optical properties
E-mail:
This study focused on the stable synthesis of nanometer-sized hexagonal disk-like ZnO, which can be utilized as the working electrode in DSSCs (dye-sensitized solar cells). Nanometer-sized zinc oxides, ZnOs, were successfully synthesized by hydrothermal treatment at 150, 200, and 250 ℃ for 8 h, and their morphologies were controlled by using different pHs, pH = 2, 3, and 4, with the addition of formic acid. The TEM (transmission electron microscopy) results reveal that the as-prepared particles at pH = 3 are hexagonal disk-shaped and the crystallite sizes are 40 nm measured across the diagonal. However, the shapes were different at the other pHs; nanoneedles at pH = 2 and hexagonal columns at pH = 4. The patterns of the photoluminescence (PL) spectra of the ZnOs varied according to their shapes; two types of emitting bands were observed in the case of the hexagonal nanodisks and columns at around 386-415 nm (violet) and 540-567 nm (green), respectively.
  1. Yan H, Johnson J, Law M, He R, Knutsen K, McKinney JR, Pham J, Saykally R, Yang P, Adv. Mater., 15, 1907 (2000)
  2. Takeo O, Ichihito N, J. Phys. Chem. Solids, 65, 359 (2004)
  3. Ma RM, Dai L, Huo HB, Yang WQ, Qin GG, Tan PH, Huang CH, Zheng J, Appl. Phys. Lett., 89, 203120 (2006)
  4. Yan H, He R, Pham J, Yang P, Adv. Mater., 15, 1042 (2003)
  5. Baxter JB, Wu F, Aydil ES, Appl. Phys. Lett., 83, 3797 (2003)
  6. Mo M, Yu JC, Zhang LZ, Li SKA, Adv. Mater., 17(6), 756 (2005)
  7. Wang WW, Zhu YJ, Chem. Lett., 33(8), 988 (2004)
  8. Yang J, Lang J, Yang L, Zhang Y, Wang D, Fan H, Liu H, Wang Y, Gao M, J. Alloys Compd., 450, 521 (2008)
  9. Wang HH, Xie CS, Zeng DW, Yang ZH, J. Colloid Interface Sci., 297(2), 570 (2006)
  10. Li C, Fang G, Liu N, Ren Y, Huang H, Zhao X, Mater. Lett., 62, 1761 (2008)
  11. Ahsanulhaq Q, Kim JH, Reddy NK, Hahn YB, J. Ind. Eng. Chem., 14(5), 578 (2008)
  12. Choi JS, Ko ES, Kang JW, Tak YS, Lee J, J. Ind. Eng. Chem., 13(2), 305 (2007)
  13. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
  14. Chen ZG, Tang YW, Zhang LS, Luo LJ, Electrochim. Acta, 51(26), 5870 (2006)
  15. Sigoli FA, Davolos MR, Jafelicci JM, J. Alloys Compd., 262, 292 (1997)
  16. Fujihara S, Naito H, Kimura T, Thin Solid Films, 389(1-2), 227 (2001)
  17. Keis K, Bauer C, Boschloo G, Hagfeldt A, Westermark K, Rensmo H, Siegbahn H, J. Photochem. Photobiol. A, 148, 57 (2002)
  18. Keis K, Magnusson E, Lindstrom H, Lindquist S, Hagfeldt A, Sol. Energy Mater. Sol. Cells, 73, 51 (2002)
  19. Law M, Greene LE, Johnson JC, Saykally R, Yang PD, Nat. Mater., 4, 455 (2005)
  20. Baxter JB, Aydil ES, Appl. Phys. Lett., 86, 053114 (2005)
  21. Gratzel M, Nature, 414, 338 (2001)
  22. Kakiuchi K, Hosono E, Fujihara S, J. Photochem. Photobiol. A, 179, 81 (2006)
  23. Niu H, Yang Q, Yu F, Tang K, Xie Y, Mater. Lett., 61, 137 (2007)
  24. Cao W, Du W, J. Lumin., 124, 260 (2007)
  25. Damen TC, Porto SPS, Tell B, Phys. Rev., 142, 570 (1966)
  26. Dai Y, Zhang Y, Li OK, Nan CW, Chem. Phys. Lett., 83, 358 (2002)
  27. Wang M, Ye CH, Zhang Y, Hua GM, Wang HX, Kong MG, Zhang LD, J. Cryst. Growth, 291(2), 334 (2006)
  28. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
  29. Ghoshal T, Kar S, Chaudhuri S, J. Cryst. Growth, 293(2), 438 (2006)
  30. Korsunska NO, Borkovska LV, Bulakh BM, Khomenkova LY, Kushnirenko VI, Markevich IV, J. Lumin., 102, 733 (2003)
  31. Djurisic AB, Leung YH, Choy WCH, Cheah KW, Chan WK, Appl. Phys. Lett., 84, 2653 (2004)