화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.5, 553-556, October, 2009
폐전선으로부터 유가자원 회수를 위한 저온열분해(Ⅱ)
Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (Ⅱ)
E-mail:
초록
본 연구의 목표는 열분해 기술의 문제점을 보완하여 유가자원의 회수와 폐기물 처리의 효율을 높이는데 있다. 우선 경제성을 높이기 위해 기존 열분해온도(보통 500∼1000 ℃)보다 낮은 450 ℃에서의 저온열분해 반응을 시도하였다. 촉매를 사용하여 반응온도와 반응시간을 단축할 수 있었고, 무 산소 상태를 유지시키는데 유리하도록 간접열을 사용하였다. 결과적으로 유가자원인 구리와 합성연료유의 회수율을 증가시킬 수 있었고, 발생하는 부산물과 배가스의 처리효과가 뛰어남을 알 수 있었다. 배가스는 2단의 중화조를 통과시켜 다이옥신은 거의 발생되지 않았으며, 나머지 대기환경기준의 측정항목 또한 기준치 이하를 보였다. 이번 연구에서는 앞에서 말한 저온 열분해장치(GTPK-001)를 제작하였고, 경제적으로나 친환경적으로 상용화 개발이 가능함을 알 수 있었다.
This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of 450 ℃, which is lower than the common pyrolysis temperature area (500∼1000 ℃). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.
  1. Sung IW, Min DK, J. Korea Society Environmental Administration, 8, 369 (2002)
  2. Dean RB, Incineration of Municipal Waste, Academic Press, London (1993)
  3. Park HS, J. Korea Society of Waste Management, 21, 706 (2004)
  4. Kosther H, Ph. D. Thesis, University of Hamburg, Hamburg, University of Hamburg (1998)
  5. Park HJ, Dong JI, Jeon JK, Yoo KS, Yim JS, Sohn JM, Park YK, J. Ind. Eng. Chem., 13(2), 182 (2007)
  6. Jung Y, Im TH, Jung JO, J. Korean Solid Wastes Engineer Society, 12, 93 (1995)
  7. Yu HJ, Ph. D. Dissertation, Chungbuk National University, Cheong-ju, Korea (2003)
  8. Kaminsky W, Simon C, Schlesslmann B, J. of AAP, 58, 117 (2001)
  9. Han SK, Kim JY, J. Korean Ind. Eng. Chem., 20(2), 223 (2009)