화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 633-647, July, 1997
용융압출에 따른 PET/PP 블랜드형의 모폴로지 특성
Morphological Characteristics of PET/PP Blend Type by Melt Extrusion
초록
PEP/PP 블렌드 시트를 용융압출 조건 및 조성변화에 따라 제조하였고, 이 시트를 이축연신하여 필름을 제조하였다 SEM 단면 관찰 결과, 블렌드 시트내 PP 형상은 타원형으로 PET 연속상과 계면분리되어 있었고, PET/PP (90/10wt%) 시트내 PP 분산상의 크기는 용융압출 조건변화에 따라 4∼14 ㎛까지 다양하였다. 즉 스긴루 속도가 증가할수록 그리고 압출온도가 감소할수록, PP 분산상의 크기가 작아지는 경향을 나타내었다. 또한, 블렌드 필름내 PET 연속상과 PP 분산상과의 계면에서 미세기공이 형성되었고, 용융압출 조건변화에 따라 23∼36%까지 다양하였다. 이러한 미세기공으로 인하여 필름의 밀도가 감소하였고, PP 단독성분 필름의 밀도보다 낮은 PET/PP 블렌드 필름을 얻을 수 있었다. PET/PP (90/10wt%) 시트내 PP 분산상의 크기가 5㎛ 이상일 때, 분산상의 크기가 작을수록 필름의 밀도는 감소하었고, 반면에 미세기공의 함량과 tensile modulus는 증가하였다. 용융압출 조건에 따른 이들의 변화를 블렌딩시 사용된 PET와 PP 수지의 용융점도 차이에 영향을 받는 혼화성을 근거로 해석하여 보았다.
PET/PP blend sheets were prepared at various extruding conditions and weight ratios, and films were prepared from the blend sheets by biaxial stretching method. The fractured surfaces obtained from SEM showed that PP phase in the blend sheets was in spheroidal shape, isolated from the interface with PET phase. Its size In PEP/PP(90/10 wt%) sheets was ranged from 4 to 14 ㎛ depending on the extruding conditions. That is, the size of PP phase was decreased with Increasing the screw speed and with decreasing the extruding temperature. The microvoids were formed at the interface bet ween PET and PP phases In the blend films and their content was ranged from 23 to 36% defending on the extruding conditions. The density of blend films was decreased due to the formation of microvoids, and thus PET/PP blend film of lower density than PP polymer wiles obtained by the controlling conditions. With decreasing the size of PP phase In PET/PP (90/10 wt% ) sheets, the density of the blend films decreased when its size was larger than 5 ㎛, whereas the microvoid contents and the tensile modulus of the blend films were increased. The observed changes with the extruding conditon were explained on the basis of the effect of their compatibility influenced by the viscosity difference between PET and PP polymers.
  1. Akiyama SL, Inoue UT, Nishi TO, Polymer Blends, C.M.C., Tokyo (1981)
  2. Baker WE, Saleem M, Polym. Eng. Sci., 27, 1634 (1987) 
  3. Baker WE, Saleem M, Polymer, 28, 2057 (1987) 
  4. Fowler MW, Baker WE, Polym. Eng. Sci., 28, 1427 (1988) 
  5. Saleem M, Baker WE, J. Appl. Polym. Sci., 39, 655 (1990) 
  6. Liu NC, Xie HW, Baker WE, Polymer, 34, 4680 (1993) 
  7. Liu NC, Baker WE, Polymer, 35(5), 988 (1994) 
  8. Barlow JW, Paul DR, Polym. Eng. Sci., 24(8), 525 (1984) 
  9. Lambla M, Seadan M, Macromol. Symp., 69, 99 (1993)
  10. Liu NC, Xie HQ, Baker WE, Polymer, 34, 4680 (1993) 
  11. Hu GH, Sun YJ, Lambla M, J. Appl. Polym. Sci., 61(6), 1039 (1996) 
  12. Sun YJ, Hu GH, Lambla M, Kotlar HK, Polymer, 37(18), 4119 (1996) 
  13. Hu GH, Sun YJ, Lambla M, Polym. Eng. Sci., 36(5), 676 (1996) 
  14. Sun YJ, Hu GH, Lambla M, Angew. Makromol. Chem., 229, 1 (1995) 
  15. Sun YJ, Hu GH, Lambla M, J. Appl. Polym. Sci., 57(9), 1043 (1995) 
  16. Vainio T, Hu GH, Lambla M, Seppala JV, J. Appl. Polym. Sci., 61(5), 843 (1996) 
  17. Tsai CH, Chang FC, J. Appl. Polym. Sci., 61(2), 321 (1996) 
  18. Georgiev Y, Stoyanov S, Dimov K, Angew. Makromol. Chem., 122, 33 (1984) 
  19. Bataille P, Boisse S, Schreier HP, J. Elastomers Plast., 18(4), 228 (1986)
  20. Bataille P, Boisse S, Schreier HP, Polym. Eng. Sci., 27(9), 622 (1987) 
  21. Wilfong DL, Hiltner A, Baer E, J. Mater. Sci., 21(6), 2014 (1986) 
  22. Spreeuwers HR, van der Pol GMW, AP-28, Plast., Ruber Process Appl., 11(3), 159 (1989)
  23. Nestrukh EV, Kuchinka MY, Izv. Vyssh. Ucheb. Zaved., Tekhnol. Legk. Prom., 6. 51 (1989)
  24. Vlsasov SV, Sagalaev GV, Filatov YM, Malyutina RS, Livin LS, Plast. Massy, 10, 52 (1973)
  25. Vlsasov SV, Sagalaev GV, Diligenskii YN, Kurakin LI, Plast. Massy, 2, 34 (1973)
  26. Vlsasov SV, Markov AV, Putyakov VF, Kolloidn. Zh, 45, 747 (1983)