화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.5, 798-804, September, 1996
페닐렌설파이드-페닐렌설파이드에테르 공중합체의 등온결정화거동
Isothermal Crystallization Behaviors of Phenylene Sulfide-Phenylene Sulfide Ether Copolymer
초록
여러조성의 페닐렌설파이드기 (PS)와 페닐렌설파이드에테르기 (PSE)를 가진 공중합체를 제조하고 이들의 조성에 따른 열적성질과 결정화거동을 조사하였다. 전 조성에서 공중합체는 하나의 유리전이온도(Tg)를 보여 주었으며 PSE함량이 높을수록 낮은 Tg를 나타내었다. 특히 PSE함량이 5%일 때부터 공중합체의 Tg 및 Tm이 급격히 감소하였다. Avrami식을 이용한 등온결정화 동력학의 연구에서 온도가 높을수록 결정화속도는 빠르고 Avrami 지수(n)는 낮게 나타났다. 공중합체 내에서 PSE의 함량이 5-20% 범위에서 n 값이 3 근처의 매우 높은 값을 보여 주었으며 함량을 더욱 증가시키면 이 효과는 감소하는 것으로 나타났다. Poly(Phenylene sulfide) (PPS) 및 PPS/poly(phenylene sulfide ether) 블렌드의 경우 n 값이 1.5-2인 것과 비교할 때 공중합체의 경우가 보다 완벽한 결정구조임을 확인하였다.
Copolymerization of phenylene sulfide (PS) and phenylene sulfide ether (PSE) was carried out with various composition ratios. Their thermal properties and crystallization behaviors were studied and compared with those of poly(phenylene sulfide) (PPS). All of the copolymers show only one glass transition temperature (Tg). Tg and melting temperature of copolymer were decreased as the content of PSE increases. Especially, these temperatures were decreased prominently when 5% of PSE unit was added. Isothermal crystallization behaviors of the copolymers were investigated by Avrami equation. In the region of cold crystallization temperature, crystallization rate constants increased and Avrami exponent(n) decreased as the temperature increased. Copolymers containing PSE unit in a concentration range of 5 to 20% have high n values near 3. However, this effect was diminished by addition of PSE unit over 20%. In the cases of poly(phenylene sulfide) (PPS) and PPS/poly (phenylene sulfide ether) blend, n values are in the range of 1.5-2. For comparing the n values, copolymer has more complete crystalline structure.
  1. Tabor BJ, Eur. Polym. J., 7, 1127 (1971) 
  2. Lovel PA, Still RH, Makromol. Chem., 188, 1561 (1987) 
  3. Hill HW, Ind. Eng. Chem. Prod. Res. Dev., 18, 4 (1979)
  4. Edmonds JT, Hill HW, U.S. Patent, 3,354,129 (1967)
  5. Edmonds JT, Hill HW, U.S. Patent, 3,624,835 (1970)
  6. Brostow W, Mater. Chem. Phys., 13, 47 (1985) 
  7. Browtow W, Macip MA, Macromolecules, 22, 2761 (1989) 
  8. Brostow W, Fleissner M, Muller WF, Polymer, 32, 419 (1991) 
  9. Short JN, Hill HW, Chemtech., 14, 481 (1972)
  10. Kenny JM, Maffezzoli A, Polym. Eng. Sci., 31, 607 (1991) 
  11. Montoneri E, J. Polym. Sci. A: Polym. Chem., 27, 3040 (1989)
  12. Schultze JD, Engelmann IAD, Boehning M, Springer J, Polym. Adv. Technol., 2, 123 (1991) 
  13. Bevington JC, "Comprehensive Polymer Science," Pergamon, FRS, 5, 543 (1988)
  14. Seo KH, Park LS, Baek JB, Brostow W, Polymer, 34, 2524 (1993) 
  15. Brostow W, Seo KH, Baek JB, Lim JC, Polym. Eng. Sci., 35(12), 1016 (1995) DOI
  16. Seo KH, Kim WS, Kim MS, Whang KH, Polymer, in press
  17. Avrami M, J. Chem. Phys., 7, 1103 (1939) 
  18. Avrami M, J. Chem. Phys., 8, 212 (1940) 
  19. Avrami M, J. Chem. Phys., 9, 177 (1941) 
  20. Lopez LC, Wilkes GL, Polymer, 28, 107 (1987)
  21. Kenny JM, Maffezol A, Polym. Eng. Sci., 31, 607 (1991)