화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.4, 701-708, July, 1996
스피로아세탈을 포함하는 방향족 폴리아미드의 합성과 물성에 관한 연구
Synthesis and Properties of Aromatic Polyamides Having Spiroacetal Moiety
초록
중합체 골격에 스피로아세탈을 함유하고 에테르기와 알콕시 곁사슬을 갖는 방향족 폴리아미드를 2,5-dialkoxyterephthaloyl chlorides와 4,4'-bis(p-aminophenoxy)dibenzalpentaerythritol로부터 저온 계면중합시켜 합성하였다. 이 중합체들은 N,N-dimethylacetamide, N-methyl-2-pyrrolidinone, m-cresol 등에 용해되었으며, 유리전이온도는 알콕시 곁사슬 길이가 증가함에 따라 177℃에서 103℃ 까지 감소하는 경향을 보였다. 또한 이들 중합체들은 272∼321℃에서 분해가 시작되었고, 800℃에서의 잔존질량은 27∼36%이었다. 모든 중합체는 결정도가 낮거나 또는 무정형임이 광각 X-선 산란패턴에서 나타났다. 곁사슬이 부톡시기로 치환된 중합체의 기계적 성질을 조사한 결과 인장강도가 43MPa, 인장탄성률이 2000MPa로 나타나 기존의 엔지니어링 플라스틱 수준과 유사함을 알 수 있었다.
A series of new semi-rigid polyspiroacetals with flexible side groups was prepared by interfacial polycondensation reactions of 4,4'-bis-(p-aminophenoxy)- dibenzalpentaerythritol with 2,5-dialkoxyterephthaloylchlorides having different alkoxy side chains. The resulting polymers showed improved solubilities in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidinone, m-cresol, etc. All polymers dissolved in these solvents could be cast into good quality films. The glass transition temperature (Tg) of the polymers decreased with increasing length of alkoxy substituent from 177℃ to 103℃. It was also found that the polymer decomposition starts in the temperature range of 270∼320℃, and their residual weight was in the range 27∼36%, depending upon alkoxy side chain lengths. According to X-ray diffraction studies, all polymers were found to be nearly amorphous due to flexible ether linkage in polymer backbone. The solution-cast film of PSA-Ⅱ-4 having butoxy side groups showed tensile strength of 43 MPa and Young's modulus of 2000 MPa.
  1. Read J, J. Chem. Soc., 101, 2090 (1912)
  2. Orth H, Kunststoffe, 41, 454 (1951)
  3. Kress BH, U.S. Patent, 2,785,996 (1957)
  4. Bailey WJ, J. Polym. Sci. Polym. Symp., 64, 17 (1978)
  5. Komminoth P, Poppenwimmer K, Readlj H, Robinson T, Ger. Offen. 2, 151, 724 (1972)
  6. Miyamoto A, Matsukawa H, Ger. Offen. 2, 343, 800 (1974)
  7. Matsukawa H, Skeki K, Ger. Offen. 2, 404, 412 (1974)
  8. Yukuta T, Oohashi T, Yoshii H, Jpn. Kokai. 7, 591, 462 (1975)
  9. Magosch JH, Karl H, Rueter H, Ger. Offen. 2, 448, 954 (1976)
  10. Heller J, Penhale DWH, Panburn SH, Prog. Biomed. Eng., 5, 175 (1988)
  11. Krida K, Hirakaea N, Dobashi T, Iwakura Y, J. Polym. Sci. A: Polym. Chem., 17, 2567 (1979)
  12. Kaito A, Kyptani M, Nakayama K, Macromolecules, 24, 3244 (1991) 
  13. Forsini A, Levita G, J. Polym. Sci. B: Polym. Phys., 15, 239 (1977)
  14. Ward W, J. Membr. Sci., 1, 99 (1976) 
  15. Jackson WA, Morris JC, U.S. Patent, 4,181,792 (1980)
  16. Jin JI, Lee JH, Shim HK, Macromolecules, 22, 93 (1989) 
  17. Jin JI, Lee SH, Park HJ, Polym. Bull., 19, 20 (1988)
  18. Rhee JM, Lee KS, Choi KY, Polym.(Korea), 14(5), 448 (1990)
  19. Lee KS, Won JC, Jung JC, Makromol. Chem., 190, 1547 (1989) 
  20. Lee KS, Kim HM, Rhee JM, Lee SM, Makromol. Chem., 192, 1033 (1991) 
  21. Ballauff M, Makromol. Chem. Rapid Commun., 7, 407 (1986) 
  22. Akar A, Talinli N, Makromol. Chem. Rapid Commun., 10, 127 (1989) 
  23. Brydson JA, "Plastics Materials," 5th Ed., Butterworths, London (1989)