화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.21, No.1, 59-69, March, 2009
Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel
E-mail:
The prediction of pressure drop for a droplet flow in a confined microchannel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio (χ) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (Δp+) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of 0.001≤Ca≤1 and 0.01 ≤χ≤100. In Newtonian droplet /Newtonian medium, two characteristic features are observed. First, an approximate relation Δp+~χ is observed for χ≥1. The excess pressure drop necessary for droplet flow is roughly proportional to χ. Second, Δp+ seems inversely proportional to Ca, which is represented as Δp+~Ca^(m) with negative m irrespective of χ. In addition, we observe that the film thickness (δf) between droplet interface and channel wall decreases with decreasing Ca, showing δf ~Ca^(n) with positive n independent of χ. Consequently, the excess pressure drop (Δp+) is strongly dependent on the film thickness (δf). The droplets larger than the channel width show enhancement of Δp+, whereas the smaller droplets show no significant change in Δp+. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly Δp+ is not affected by this flow history. Instead, Δp+ is more dependent on δf irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in δf induced by the normal stress difference in viscoelastic medium results in a drastic reduction of Δp+.
  1. Abkarian M, Faivre M, Stone HA, PNAS, 103, 538 (2006)
  2. Abraham S, Jeong EH, Arakawa T, Shoji S, Kim KC, Kim I, Go JS, Lab Chip, 6, 752 (2006)
  3. Adzima BJ, Velankar SS, J. Micromech. Microeng., 16, 1504 (2006)
  4. Bretherton FP, J. Fluid Mech., 10, 166 (1961)
  5. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF, Philos. T. Roy. Soc. A, 362, 1087 (2004)
  6. Brooks AN, Hughes TJR, Comput. Method Appl. Mech. Engrg., 32, 199 (1982)
  7. Chinyoka T, Renardy YY, Renardy A, Khismatullin DB, J. Non-Newton. Fluid Mech., 130(1), 45 (2005)
  8. Chio H, Jensen MJ, Wang XL, Bruus H, Attinger D, NSTI-Nanotech., 2, 497 (2006)
  9. Chio H, Jensen MJ, Wang XL, Bruus H, Attinger D, J. Micromech. Microeng., 16, 143 (2006)
  10. Christopher GF, Anna SL, J. Phys. D: Appl. Phys., 40, R319 (2007)
  11. Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA, Angew. Chem. Int. Edit., 46, 8970 (2007)
  12. Chung C, Hulsen MA, Kim JM, Ahn KH, Lee SJ, J. Non-Newtonian Fluid Mech., 155, 80 (2008)
  13. Chung PMY, Kawaji M, Int. J. Multiphase Flow, 30, 735 (2004)
  14. Cox BG, J. Fluid Mech., 14, 81 (1962)
  15. Denn MM, Process fluid mechanics, Prentice-Hall, Inc. (1980)
  16. Edvinsson RK, Irandoust S, AIChE J., 42(7), 1815 (1996)
  17. Fairbrother F, Stubbs AE, J. Chem. Soc., 1, 527 (1935)
  18. Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM, Lab Chip, 7, 1479 (2007)
  19. Giavedoni MD, Saita FA, Phys. Fluids, 9, 2420 (1997)
  20. Giavedoni MD, Saita FA, Phys. Fluids, 11, 786 (1999)
  21. Griffiths AD, Tawfik DS, Embo J., 22, 24 (2003)
  22. He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT, Anal. Chem., 77, 1539 (2005)
  23. Heil M, Phys. Fluids, 13, 2518 (2001)
  24. Hulsen MA, Fattal R, Kupferman R, J. Non-Newton. Fluid Mech., 127(1), 27 (2005)
  25. Jensen MJ, Goranovic G, Bruus H, J. Micromech. Microeng., 14, 876 (2004)
  26. Kline TR, Runyon MK, Pothiawala M, Ismagilov RF, Anal. Chem., 80, 6190 (2008)
  27. Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ, AIChE J., 51(9), 2428 (2005)
  28. Laser DJ, Santiago JG, J. Micromech. Microeng., 14, R35 (2004)
  29. Liu AW, Bornside DE, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 77(3), 153 (1998)
  30. Morris CJ, Forster FK, Exp. Fluids, 36, 928 (2004)
  31. Olbricht WL, Ann. Rev. Fluid Mech., 28, 187 (1996)
  32. Pillapakkam SB, Singh P, J. Comput. Phys., 174, 552 (2001)
  33. Queguiner C, Barthes-Biesel D, J. Fluid Mech., 348, 349 (1997)
  34. Ratulowski J, Chang HC, Phys. Fluids A, 1, 1642 (1989)
  35. Reinelt DA, J. Fluid Mech., 175, 557 (1987)
  36. Secomb TW, Hsu R, Int. J. Microcirc., 15, 250 (1995)
  37. Sepp A, Ghadessy F, Choo Y, Gene Therapy and Regulation, 3, 51 (2007)
  38. Shen EI, Udell KS, J. Appl. Mech. Trans. ASME, 52, 253 (1985)
  39. Song H, Tice JD, Ismagilov RF, Angew. Chem. Int. Edit., 42, 768 (2003)
  40. Tawfik DS, Griffiths AD, Nat. Biotechnol., 16, 652 (1998)
  41. Taylor GI, J. Fluid Mech., 10, 161 (1961)
  42. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ, J. Comput. Phys., 169, 708 (2001)
  43. Wong H, Radke CJ, Morris S, J. Fluid Mech., 292, 71 (1995)
  44. Wong H, Radke CJ, Morris S, J. Fluid Mech., 292, 95 (1995)
  45. Yue PT, Feng JJ, Liu C, Shen J, J. Fluid Mech., 540, 427 (2005)
  46. Zheng B, Tice JD, Ismagilov RF, Adv. Mater., 16(15), 1365 (2004)