화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 436-441, July, 2008
Preparation of porous poly(e-caprolactone) scaffolds by gas foaming process and in vitro/in vivo degradation behavior using γ-ray irradiation
E-mail:
Macroporous poly(e-caprolactone) (PCL) scaffolds were prepared by gas foaming/salt leaching method. Their degradation behaviors were investigated as a function of radiation dose (total dose; 50, 100, 200, and 300 kGy: dose rate; 10 kGy/h) in vitro and in vivo. The PCL scaffolds have porosity of 86.96.8%. The porosity and mechanical strength could be controlled by the adjustment of an acid.base gas evolving reaction between citric acid and ammonium bicarbonate. The irradiated scaffolds were degraded faster than unirradiated ones. And scaffolds were degraded more slowly in vitro than in vivo regardless of irradiated or unirradiated ones.
  1. Kaplan DL, Mayer JM, Greenberger M, Gross R, McCarthy S, Polym. Degrad. Stab., 45, 165 (1994)
  2. Koenig MF, Huang SJ, Polymer, 36(9), 1877 (1995)
  3. Tokiwa Y, Komatsu S, Polymer Preprints, vol. 44, Japan, 1995, p. 3158
  4. Huang SJ, Macromol J, Sci.-Pure Appl. Chem., A32, 593 (1995)
  5. Park KM, Shalaby WS, Park H, Biodegradable Hydrogels for Drug Delivery, Technomic, Lancaster, PA, 1993, p. 6
  6. Sivalingam G, Karthik R, Madras G, J. Anal. Appl. Pyrol., 70, 631 (2003)
  7. Yang KK, Wang XL, Wang YZ, J. Ind. Eng. Chem., 13(4), 485 (2007)
  8. Jin FL, Park SJ, J. Ind. Eng. Chem., 13(4), 608 (2007)
  9. Aoyagi K, Yamashita K, Doi Y, Polym. Degrad. Stab., 76, 53 (2003)
  10. Wachsen O, Platkowski K, Reichert KH, Polym. Degrad. Stab., 57, 87 (1997)
  11. Penco M, Sartore L, Bignotti F, D’Antone S, Landro LD, Eur. Polym. J., 36, 901 (2000)
  12. McNeill IC, Leiper HA, Polym. Degrad. Stab., 12, 373 (1985)
  13. McNeill IC, Leiper HA, Polym. Degrad. Stab., 11, 267 (1985)
  14. Potts JE, in: H.H.G. Jelineck (Ed.), Biodegradation, Elsevier, New York, 1978, p. 617
  15. Raghavan D, Polym. Plast. Technol. Eng., 34, 41 (1995)
  16. Engelberg I, J. Kohn, Biomaterials, 12, 292 (1991)
  17. Koleske JV, in: Paul DR, Newman S (Eds.), Polymer Blends, vol. 2, Academic Press, New York, 1978, p. 369
  18. Field RD, Rodriguez F, Finn RK, J. Appl. Polym. Sci., 18, 3571 (1974)
  19. Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG, J.Biomed. Mater. Res., 19, 43 (1985)
  20. Tokiwa Y, Suzuki T, Takeda K, Agric. Biol. Chem., 52, 1973 (1988)
  21. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R, J. Biomed. Mater. Res., 27, 11 (1993)
  22. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R, J. Biomed. Mater. Res., 27, 183 (1993)
  23. Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, Langer R, Biomaterials, 17, 115 (1996)
  24. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R, Biomaterials, 14, 323 (1993)
  25. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP, Polymer, 35(5), 1068 (1994)
  26. Lo H, Kadiyala S, Guggino SE, Leong KW, J. Biomed. Mater. Res., 30, 475 (1996)
  27. Schugens C, Maguet V, Grandfils C, Jerome R, TeyssieP, J. Biomed. Mater. Res., 30, 449 (1996)
  28. Nam YS, Park TG, J. Biomed. Mater. Res., 47, 8 (1999)
  29. Whang K, Thomas CH, Healy KE, Nuber G, Polymer, 36(4), 837 (1995)
  30. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R, Biomaterials, 17, 1417 (1996)
  31. Harris LD, Kim BS, Mooney DJ, J. Biomed.Mater. Res., 42, 396 (1998)
  32. Park A, Wu B, Griffith LG, J. Biomater. Sci. Polym. Ed., 9, 89 (1998)
  33. Nam YS, Yoon JJ, Park TG, J. Biomed. Mater. Res. Appl. Biomater., 53, 1 (2000)
  34. Sinha VR, Bansal K, Kaushik R, Kumria R, A. Trehan, Int. J. Pharm., 278, 1 (2004)
  35. Sivalingam G, Madras G, Polym. Degrad. Stab., 84, 393 (2004)
  36. Sivalingam G, Madras G, Polym. Degrad. Stab., 80, 11 (2003)
  37. Gan ZH, Yu DH, Zhong ZY, Liang QZ, Jing XB, Polymer, 40(10), 2859 (1999)
  38. Darwis D, Mitomo H, Enjoji T, Yoshi F, Makuuchi K, Polym. Degrad. Stab., 62, 259 (1998)