화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.4, 686-691, August, 2008
에탄올/황산 혼압액에서 양극산화법을 이용한 자기정렬된 ZnO 줄무늬 구조 제조 연구
Self-assembly of ZnO Stripes Prepared by Anodization in an Ethanolic Sulfuric Acid
E-mail:
초록
산화아연은 광학적/전기적 특성 때문에 많이 연구되고 있는 재료이지만 산, 염기분위기에 약하기 때문에 양극 산화법을 이용하여 제조하기 힘들며, 현재 보고 되어 지고 있는 연구결과 역시도 많지 않다. 본 논문에서는 일반적인 전해질인 수용액이 아닌 에탄올과 H2SO4의 혼합용액을 사용하여 양극산화 하였으며 수용액에서 제조된 ZnO와는 다른 자기 정렬된 줄무늬의 육각판상구조를 가진 ZnO를 제조할 수 있었다. 이는 H2SO4를 함유한 에탄올용액에서 H2SO4에 미량 포함된 H2O가 ZnO의 선택적인 용해를 함으로서 자기 정렬된 구조를 만드는데 기인한다. H2SO4의 농도, 인가전압, 양극산화 시간, 물 첨가 등에 따른 영향 및 자기 정렬된 줄무늬의 육각판상구조를 생성하는 메커니즘을 다루었다.
There are no many research reports on the preparation of ZnO by electrochemical oxidation since the zinc oxide is very easily dissolved in an acidic or basic environment, even though zinc oxides have attracted many attentions because of their optical/electrical properties. In this paper, we describe the fabrication of self-ordered stripes of ZnO by anodization of Zn in an ethanolic sulfuric acid. The formation of stripes of ZnO originating from Zn is attributed to water-selective dissolution of ZnO during anodization. We study in detail the effects of concentration of H2SO4, applied potential, anodization time, and addition of a small amount of water on the fabrication of stripes of ZnO. Mechanisms for the fabrication of ZnO stripes are discussed in terms of the above-mentioned effects.
  1. Chick H, Liang J, Cloutier S, Kouklin N, Xu J, Appl. Phys. Lett., 84, 3376 (2004)
  2. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
  3. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T, J. Vac. Sci. Technol. B, 22932 (2004)
  4. Park WI, Yi GC, Kim MY, Pennycook SJ, Adv. Mater., 14(24), 1841 (2002)
  5. Kong Y, Yu D, Zhang B, Fang W, Feng S, Appl. Phys. Lett., 78, 407 (2001)
  6. Zhang HZ, Sun XC, Wang RM, Yu DP, J. Cryst. Growth, 269(2-4), 464 (2004)
  7. Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
  8. Peterson RB, Fields CL, Gregg BA, Langmuir, 20(12), 5114 (2004)
  9. Tian Z, Voigt J, Liu J, Mckenzie B, Mcdermott M, Rodriguez M, Konishi H, Xu H, Nat. Mater., 2, 821 (2003)
  10. Choi J, Martin-Luther-Universitt (2004)
  11. Birss V, Xia S, Yue R, Rateick RG, J. Electrochem. Soc., 151(1), B1 (2004)
  12. Takebe J, Itoh S, Okada J, Ishibashi K, J. Biomed. Mater. Res., 51, 398 (2000)
  13. Delplancke JL, Degrez M, Fontana A, Winand R, Surf. Technol., 16, 153 (1982)
  14. Choi JS, Lim JH, Lee SC, Chang JH, Kim KJ, Cho MA, Electrochim. Acta, 51(25), 5502 (2006)
  15. Macak JM, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100 (2005)
  16. Lim JH, Choi J, Small, 3, 1504 (2007)
  17. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006)
  18. Kim SJ, Choi J, Electrochim. Acta, submitted for publication
  19. Chang SS, Yoon SO, Park HJ, Sakai A, Appl. Surf. Sci., 158(3-4), 330 (2000)
  20. Chang SS, Yoon SO, Park HJ, Sakai A, Mater. Lett., 53, 432 (2002)
  21. Huang GS, Wu XL, Cheng YC, Shen JC, Huang AP, Chu PK, Appl. Phys. A-Mater. Sci. Process., A83, 463 (2007)
  22. Wu X, Lu G, Li C, Shi G, Nanotechnology, 17, 4936 (2006)
  23. Kuan CY, Chou JM, Leu IC, Hon MH, Electrochem. Commun., 9, 2093 (2007)
  24. Yu HD, Zhang ZP, Han MY, Hao XT, Zhu FR, J. Am. Chem. Soc., 127(8), 2378 (2005)
  25. Zhang Z, Yu H, Shao X, Han M, Chem. Eur. J., 11, 3149 (2005)
  26. Bouchard M, Smith DC, Spectrochim. Acta, 59, 2247 (2003)