화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.4, 732-737, July, 2008
Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells
E-mail:
A series of sulfonated poly(arylene ether sulfone) (PAES) were synthesized through direct aromatic nucleophilic substitution polycondensation of 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (SDCDPS), 4,4-dichlorodiphenylsulfone (DCDPS) and 4,4-biphenol (BP). With increasing sulfonate groups in the polymer, water uptake, ion exchange capacity (IEC) and proton conductivities increased, resulting from enhanced membrane hydrophilicity. The membranes exhibited higher thermal stability up to 300 ℃, verified by thermogravimetric analysis (TGA). A maximum proton conductivity of 0.11 S/cm at 50 mol% of sulfonation degree was measured at 30 ℃, which is slightly higher than Nafion®117 membrane (0.0908 S/cm). However, the methanol permeability of the PAES membrane was much lower than that of Nafion®117 membrane. As a result, a single cell performance test demonstrated that PAES-BP with 50 mol% sulfonation degree exhibited higher power density than Nafion®117.
  1. Karl K, Guenter S, Schnurnberger W, Chem. Ing. Tech., 69(6), 852 (1996)
  2. Arico AS, Srinivasan S, Antonucci V, Williams MC, Fuel Cells, 1(2), 87 (2001)
  3. McGrath KM, Surya Prakash GK, Olah GA, J. Ind. Eng. Chem., 10(7), 1063 (2004)
  4. Park KW, Sung YE, J. Ind. Eng. Chem., 12(2), 165 (2006)
  5. Pak C, Lee SJ, Lee SA, Chang H, Korean J. Chem. Eng., 22(2), 214 (2005)
  6. Lee S, Kim D, Lee J, Chung ST, Ha HY, Korean J. Chem. Eng., 22(3), 406 (2005)
  7. Ma CS, Zhang L, Mukerjee S, Ofer D, Nair BD, J. Membr. Sci., 219(1-2), 123 (2003)
  8. Kauranen PS, Skou E, J. Appl. Electrochem., 26(9), 909 (1996)
  9. Jia NY, Lefebvre MC, Halfyard J, Qi ZG, Pickup PG, Electrochem. Solid State Lett., 3(12), 529 (2000)
  10. Samms SR, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(5), 1498 (1996)
  11. Noshay A, Robeson LM, J. Appl. Polym. Sci., 20(7), 10885 (1976)
  12. Ueda M, Toyota H, Ochi T, Sugiyama J, Yonetaka K, Masuko T, Teramoto T, J. Polym. Sci. A: Polym. Chem., 31(4), 853 (2003)
  13. Wang F, Ji Q, Harrison W, Mecham J, Formato R, Kovar R, Osenar P, American Chem. Soc., Polymer Preprints, Division of Polymer Chemistry, 41(1), 237 (2000)
  14. Kim YS, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS, J. Electrochem. Soc., 151(12), A2150 (2004)
  15. Kim HJ, Krishnan NN, Lee SY, Hwang SY, Kim D, Jeong KJ, Lee JK, Cho E, Lee J, Han J, Ha HY, Lim TH, J. Power Sources, 160(1), 353 (2006)
  16. Einsla BR, Kim YS, Hickner MA, Hong YT, Hill ML, Pivovar BS, McGrath JE, J. Membr. Sci., 255(1-2), 141 (2005)
  17. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231 (2002)
  18. Woo Y, Oh SY, Kang YS, Jung B, J. Membr. Sci., 220(1-2), 31 (2003)
  19. Cahan BD, Wainright JS, J. Electrochem. Soc., 140, 185 (1993)
  20. Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155 (1999)
  21. Wang F, Chen T, Xu J, Macromol. Chem. Phys., 199(7), 1421 (1998)
  22. Wang F, Li JK, Chen TL, Xu JP, Polymer, 40(3), 795 (1999)
  23. Wang F, Qi Y, Chen T, Xing Y, Lin Y, Xu J, Crystal Structure Communications, C55(6), 871 (1999)
  24. Sakurai K, Douglas EP, MacKnight WJ, Macromolecules, 26(1), 208 (1993)
  25. Xue YP, Hara M, Macromolecules, 30(13), 3803 (1997)
  26. Miyatake K, Iyotani H, Yamamoto K, Tsuchida E, Macromolecules, 29(21), 6969 (1996)
  27. Gieke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)