화학공학소재연구정보센터
Clean Technology, Vol.13, No.3, 201-207, September, 2007
환경친화적인 수용성 섬유에 관한 연구
A Study on the Environmentally Friendly Water-Soluble Fiber
E-mail:
초록
본 연구에서는 셀룰로오스계 부직포를 이용하여 상온에서 물에 녹는 카르복시메틸셀룰로오스(carboxymethylcellulose;CMC)를 합성하였다. 실험변수는 반응온도, 시간, 수산화나트륨(NaOH) 및 모노클로로아세트산(monochloroacetic acid;MCA)이다. 머서화(mercerization) 및 에테르화(etherification)할 때, 용해도와 치환도(degree of substitution ; DS)는 NaOH(또는, MCA)농도를 증가시키면서 최대 용해도와 치환도를 관찰하였다. 이때의 최대용해도와 치환도는 NaOH(또는, MCA)농도가 30%일 때 얻어졌다. 치환도를 볼 때, MCA농도의 영향은 NaOH농도에 비해 더 크게 나타났다. CMC섬유의 인장강도(Tensile strength; TS)에서는 효과적인 결과를 보였고, 반응시간, 시약농도와 반응온도에 따라 인장강도는 감소하였다. 그러나 인장 강도의 큰 변화가 중성영역 부근에서 관찰되었다.
Carboxymethylcellulose (CMC), which is water-soluble at room temperature, was synthesized from cellulose in this study. Experimental parameters included reaction temperature, time, concentration of NaOH, and monochloroacetic acid (MCA). In mercerization and etherification, solubility and degree of substitution (DS) increased when NaOH (or MCA) concentration increased and maximum solubility and DS were achieved when NaOH or MCA was 30%. The effect of MCA concentrations on the DS was larger than that of the NaOH concentration. Tensile strength of the CMC was decreased by the increases of reaction time, reagent concentration and reaction temperature. Tensile strength also decreased by NaOH and MCA. However, low decrease of tensile strength was observed in near neutral region.
  1. Humphery AE, Wilkman CR, Cellulose as a Chemical and Energy Resource, Wiley, 1975, pp.49-65
  2. Hillring B, Biomass Bioenerg., 30(10), 815 (2006)
  3. Krassig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, pp.375-418 (1992)
  4. Whistler RL, BeMiller JN, Industrial Gums-Polysaccharides and Their Derivatives, 2nd ed., Academic Press, New York (1973)
  5. Kennedy JF, Phillips GO, Wedlock DJ, Williams PA, Cellulose and Its Derivatives-Chemistry, Biochemistry and Applications, Ellis Horwood (1985)
  6. Shelanski SH, Clark AM, Food Res. Int., 13, 29 (1948)
  7. Kern W, Pharm. Ind., 21, 45 (1959)
  8. Pomeranz Y, Functional Properties of Food Components, 2nd Ed., Academic Press, San Diego (1991)
  9. Belitz HD, Grosch W, Behrbuch der Lebensmittelchemie, Springer (1992)
  10. Kotz J, Bogen I, Heinze T, Lange S, Kulicke WM, Colloids Surf. A: Physicochem. Eng. Asp., 183, 621 (2001)
  11. Kim BS, Mun SP, Na KK, Rhee JM, Cho SC, J. Korean Fiber Soc., 31(2), 96 (1994)
  12. Heinze T, Liebert T, Polym. Sci., 26, 1689 (2001)
  13. Heinze T, Liebert TF, Pfeiffer KS, Hussain MA, Cellulose, 10, 283 (2003)
  14. Racz I, Borsa, Cellulose J, J. Cellulose, 4, 293 (1997)
  15. Song HJ, Lee S, Choi Y, Chung EH, Maken S, Park JW, Clean Technol., 11(4), 189 (2005)
  16. Green JW, Cellulose Ether, In Method in Carbohydrate Chemistry, Whistler, R. L., ed., Vol. 3, Academic Press, New York, 1963, pp.322