화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.2, 233-240, March, 1996
티올초산에 의한 폴리초산비닐모노티올의 합성시 연쇄이동상수의 측정 : Ⅱ
Determination of Chain Transfer Constant in the Synthesis of Poly(vinyl acetate) mono Thiol by Thiolacetic acid : Ⅱ
초록
초산비닐과 티올초산의 자유 라디칼 중합을 메틸알코을 용액중에서 중합 개시제로서 아조비스이소부티로니트릴을 사용하여 행하였다 수평균중합도는 gel permeation chromatography(GPC)-viscometry방법에 의해 측정하였으며, 아울러 연쇄이동상수는 Mayo의 방정식으로 구하였다. 초산비닐에 대한 티올초산의 연쇄이동상수는 온도 60℃에서 0.186이었다. 이 값은 초산비닐과 티올초산에 대한 자유 라디칼 중합의 활성을 예측하는 효과적인 지표인자임을 알았다. 따라서 티올초산은 자유 라디칼 중합에서 연쇄이동제 뿐만 아니라 티올기의 유용한 공급물질로서도 실용적으로 사응 가능함을 알았다.
Free radical polymerization of thiolacetic acid onto vinyl acetate was investigated in the methyl alcohol medium by using 2,2'-azobisisobutyronitrile as initiator. The number-ave age degree of polymerization were measured by gel permeation chromatography (GPC)-viscometric method. In addition, the chain transfer constant(Cχ) was determined by using the Mayo equation. It was determined to be 0.186 at 60℃. It was found that chain transfer constant was an effective ordering factors as a forecast of free radical polymerization reactivity for vinyl acetate and thiolacetic acid. Therefore, It was also shown that thiolacetic acid can be commercially used as not only a chain transfer agent for poly(vinyl acetate) mono thiol (PVACT) but also a effective compound for thiol functional group in the free radical polymerization.
  1. Lee SY, Sim HS, Kim BK, Shin YJ, Annual Spring Meeting of Poly. Soc. of Korea (1995)
  2. Pichot C, Pellicer R, Grossetete P, Guillot J, Makromol. Chem., 185, 113 (1984) 
  3. Okaya T, Polym.(Japan), 37, 682 (1988)
  4. Zilberman EN, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C35(1), 47 (1995)
  5. Xie TY, Hamielec AE, Wood PE, Woods DR, Polymer, 32, 537 (1991) 
  6. Xie TY, Hamielec AE, Wood PE, Woods DR, Polymer, 32, 1098 (1991) 
  7. Xie TY, Hamielec AE, Wood PE, Woods DR, Polymer, 32, 1696 (1991) 
  8. Hoyle CE, Hensel RD, Grubb MB, J. Polym. Sci. A: Polym. Chem., 22, 1865 (1984)
  9. Mayo FR, J. Am. Chem. Soc., 65, 2324 (1943) 
  10. Gregg RA, Mayo FR, Discuss. Faraday Soc., 2, 328 (1947) 
  11. Mayo FR, J. Am. Chem. Soc., 75, 6133 (1953) 
  12. Gregg RA, Alderman DM, Mayo FR, J. Am. Chem. Soc., 70, 3740 (1948) 
  13. Kolthof IM, Harris WE, Ind. Eng. Chem. Anal., 18, 61 (1946) 
  14. Walling C, J. Am. Chem. Soc., 70, 2561 (1948) 
  15. Moore LO, Macromolecules, 16, 357 (1983) 
  16. Moore LO, Macromolecules, 16, 359 (1983) 
  17. Moore LO, Macromolecules, 21, 3122 (1988) 
  18. Meijs GF, Rizzardo E, Thang SH, Macromolecules, 21, 3122 (1988) 
  19. Solomor OF, Ciuta IZ, J. Appl. Polym. Sci., 6, 683 (1962) 
  20. Odian G, "Principles of Polymerization," 3rd ed., 243 ~ 245, Wiley-Interscience Pub., New York (1991)
  21. Berger KC, Brandrup G, "Polymer Handbook," 3rd Ed., eds. by J. Brandrup and E.H. Immergut, p. II 81 ~ II 141, Wiley-Interscience Pub., New York (1989)
  22. Lee SY, Sim HS, Shin YJ, Polym.(Korea), 19(6), 883 (1995)
  23. ASTM D5225-92, Standard Test Method for Measuring Solution Viscosity of Polymers with a Differential Viscometer
  24. Benoit H, Grubisic Z, Rempp P, J. Polym. Sci. C: Polym. Lett., 5, 753 (1967)
  25. Haney MA, J. Appl. Polym. Sci., 30, 3023 (1985) 
  26. Haney MA, J. Appl. Polym. Sci., 30, 3037 (1985) 
  27. Park TK, Lee JO, Polym.(Korea), 15(3), 311 (1991)
  28. Potnis SP, Deshpande AM, Makromol. Chem., 153, 139 (1972) 
  29. Olive GH, Olive S, Fortschr. Hochpolym. Forsch., 2, 496 (1961)
  30. Matsumoto M, Maeda M, J. Polym. Sci., 17, 438 (1955) 
  31. Sakurada I, Sakaguchi Y, Hashimoto K, Kobunshi Kagaku, 19, 593 (1962)
  32. Clarke JT, Howard RO, Stockmayer WH, Makromol. Chem., 44-46, 427 (1961) 
  33. Crumpler JB, Yoe JH, "Chemical Computations and Errors," p. 127, John Wiley and Sons, Inc., New York (1965)
  34. Hardy G, Varga J, Nytrai K, Tsajlik I, Zubonyai L, Vysokomol. Soedin., 6, 758 (1964)