화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.105, No.2, 838-845, 2007
Proton conductivity and methanol permeability of sulfonated poly(vinyl alcohol) membranes modified by using sulfoacetic acid and poly(acrylic acid)
Sulfonated poly(vinyl alcohol) (PVA) for use as a proton conductive membrane in a direct methanol fuel cell (DMFC) was prepared by reacting the PVA with sulfoacetic acid and poly(acrylic acid). The effects of the amount of sulfoacetic acid and poly(acrylic acid) on proton conductivity, methanol permeability, water uptake, and ion exchange capacity (IEC) of the sulfonated PVA membranes were investigated by using impedance analysis, gas chromatography, gravimetric analysis, and titration techniques, respectively. The water uptake of the membranes decreased with the amount of the sulfoacetic acid and the amount of poly(acrylic acid) used. The proton conductivity and the IEC values of the membranes initially increased and then decreased with the amount of the sulfoacetic acid. The methanol permeability of the sulfonated PVA membranes decreased continuously with the amount of the sulfoacetic acid. (c) 2007 Wiley Periodicals, Inc.