화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.2, 113-119, February, 2008
Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries
E-mail:
A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.
  1. Bosman AW, Janssen HM, Meijer EW, Chem. Rev., 99(7), 1665 (1999)
  2. Grayson SK, Frechet JMJ, Chem. Rev., 101(12), 3819 (2001)
  3. Hudson SD, Jung HT, Percec V, Cho WD, Johansson G, Ungar G, Balagurusamy VS, Science, 278(5337), 449 (1997)
  4. Gehringer L, Bourgogne C, Guillon D, Donnio B, J. Am. Chem. Soc., 126(12), 3856 (2004)
  5. Fisher M, Vogtle F, Angew. Chem.-Int. Edit., 38, 884 (1999)
  6. Hirao A, Tsunoda Y, Matsuo A, Sugiyama K, Watanabe T, Macromol. Res., 14(3), 272 (2006)
  7. Park C, Lee IH, Lee S, Song Y, Rhue M, Kim C, Proc. Natl. Acad. Sci. USA, 103, 1199 (2006)
  8. Kamikawa Y, Kato T, Org. Lett., 8, 2463 (2006)
  9. Gehringer L, Guillon D, Donnio B, Macromolecules, 36(15), 5593 (2003)
  10. Kim KT, Lee IH, Park C, Song Y, Kim C, Macromol. Res., 12(5), 528 (2004)
  11. Song YM, Park CY, Kim CH, Macromol. Res., 14(2), 235 (2006)
  12. Dukeson DR, Ungar G, Balagurusamy VSK, Percec V, Johansson GA, Glodde M, J. Am. Chem. Soc., 125(51), 15974 (2003)
  13. Suarez M, Lehn JM, Zimmerman SC, Skoulios A, Heinrich B, J. Am. Chem. Soc., 120(37), 9526 (1998)
  14. Percec V, Cho WD, Ungar G, Yeardley DJP, J. Am. Chem. Soc., 123(7), 1302 (2001)
  15. Ungar G, Liu Y, Zeng X, Percec V, Cho WD, Science, 299, 1208 (2003)
  16. Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK, Nature, 428, 157 (2004)
  17. Yeardley DJP, Ungar G, Percec V, Holerca MN, Johansson G, J. Am. Chem. Soc., 122(8), 1684 (2000)
  18. Percec V, Peterca M, Sienkowska MJ, Ilies MA, Aqad E, Smidrkal J, Heiney PA, J. Am. Chem. Soc., 128(10), 3324 (2006)
  19. Percec V, Dulcey AE, Peterca M, Adelman P, Samant R, Balagurusamy VSK, Heiney PA, J. Am. Chem. Soc., 129(18), 5992 (2007)
  20. Vanhest JC, Baars MW, Elissenroman C, Vangenderen MH, Meijer EW, Macromolecules, 28(19), 6689 (1995)
  21. Roman C, Fischer HR, Meijer EW, Macromolecules, 32(17), 5525 (1999)
  22. Schenning APHJ, Elissen-Roman C, Weener JW, Baars MWPL, van der Gaast SJ, Meijer EW, J. Am. Chem. Soc., 120(32), 8199 (1998)
  23. Iyer J, Hammond PT, Langmuir, 15(4), 1299 (1999)
  24. Iyer J, Fleming K, Hammond PT, Macromolecules, 31(25), 8757 (1998)
  25. Cameron JH, Facher A, Lattermann G, Diele S, Adv. Mater., 9(5), 398 (1997)
  26. Jayaraman M, Frechet JMJ, J. Am. Chem. Soc., 120(49), 12996 (1998)
  27. Cho BK, Chung YW, Bull. Korean Chem. Soc., 27, 29 (2006)
  28. Yoo YS, Choi JH, Song JH, Nam-Keun H, Zin WC, Park S, Chang TY, Lee M, J. Am. Chem. Soc., 126(20), 6294 (2004)
  29. Cho BK, Jain A, Nieberle J, Mahajan S, Wiesner U, Gruner SM, Turk S, Rader HJ, Macromolecules, 37(11), 4227 (2004)
  30. Loo YL, Register RA, Adamson DH, J. Polym. Sci. B: Polym. Phys., 38(19), 2564 (2000)
  31. Pavia D, Introduction to Spectroscopy, Thomson Learning (2001)
  32. Analysis of the SAXS pattern was performed on the basis of the following equation: q2/(2π)2 = h2/(asinγ)2.2hkcosγ/absin2 γ + k2/(bsinγ)2, where h and k are Miller indices of the scattering planes, a and b are unit cell basis vectors, and γ is the angle between a and b (0° < γ < 180°)
  33. Balsamo V, von Gyldenfeldt F, Stadler R, Macromolecules, 32(4), 1226 (1999)