화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.1, 7-12, January, 2008
표면처리된 PET 섬유와 PP 복합재료에 관한 연구
A Study on Polypropylene and Surface Modified PET Fiber Composites
E-mail:
초록
폴리(에틸렌 테레프탈레이트)(PET) 섬유는 폴리프로필렌(PP)에 비해 높은 기계적 물성과 용융온도를 갖고 있어 폴리프로필렌의 기계적 물성을 향상시키기 위한 섬유강화재료로 사용이 가능함을 확인하였다. 그러나 PP와 PET 섬유는 상용성이 부족하여 복합재료의 기계적 물성이 저하되었으며 PET 섬유의 구조적인 특성상 PP-g-MAH를 첨가하여도 효과가 부족하였다. 이러한 문제점을 해결하기 위해 NaOH 수용액으로 PET 섬유의 표면처리를 하여 PET 섬유의 표면에 친수성기를 도입하였으며 상용화제로서 PP-g-MAH를 첨가하여 기계적 물성이 우수한 PP/PET 섬유 복합재료를 제조하고 SEM과 IR의 결과와 물성의 거동을 상호관련지었다.
We confirmed that poly(ethylene terephthalate)(PET) fiber had the possibility to improve the mechanical properties of polypropylene(PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer. Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.
  1. Akbari M, Zadhoush A, Haghighat M, J. Appl. Polym. Sci., 104(6), 3986 (2007)
  2. Saujanya C, Radhakrishnan S, Polymer, 42(10), 4537 (2001)
  3. Papadopoulou CP, Kalfoglou NK, Polymer, 41(7), 2543 (2000)
  4. Launay A, Thominette F, Verdu J, Polym. Degrad. Stabil., 63, 385 (1999)
  5. Kao CY, Cheng WH, Wan BZ, J. Appl. Polym. Sci., 70(10), 1939 (1998)
  6. Limei, Zhang DS, Wang QR, J. Appl. Polym. Sci., 77(13), 3010 (2000)
  7. Ganan P, Mondragon I, J. Mater. Sci., 39(9), 3121 (2004)
  8. Janevski A, Bogoeva-Gaceva G, Mader E, Inc. J. Appl. Polym. Sci., 74, 239 (1999)
  9. Silva DA, Betioli AM, Gleize PJP, Roman HR, Gomex LA, Ribriro JLD, Cem. Concr. Res., 35, 1741 (2005)
  10. Pawlak A, Pluta M, Morawiec J, Galeski A, Pracella M, Eur. Polym. J., 36, 1875 (2000)
  11. Karayannidis GP, Achilias DS, Macromol. Mater. Eng., 292, 128 (2007)
  12. Mishra S, Zope VS, Goje AS, J. Appl. Polym. Sci., 90(12), 3305 (2003)
  13. Boxus T, Deldime-Rubbens M, Mougenot P, Yves-Jacques S, Marchand-Brynaert J, Polym. Adv. Technol., 7, 589 (1996)
  14. Hosseini SS, Taheri S, Zadhoush A, Mehrabani-Zeinabad A, J. Appl. Polym. Sci., 103(4), 2304 (2007)
  15. Allen NS, Edge M, Daniels H, Royall D, Polym. Degrad. Stabil., 63, 373 (1998)
  16. Sammon C, Yarwood J, Everall N, Polymer, 41(7), 2521 (2000)
  17. Yoshioka T, Ota M, Okuwaki A, Ind. Eng. Chem. Res., 42(4), 675 (2003)
  18. Mougenot P, Koch M, Dupont I, Schneider YJ, Marchandbrynaert J, J. Colloid Interface Sci., 177(1), 162 (1996)
  19. ASTM D 2578
  20. Sammon C, Yarwood J, Everall N, Polym. Degrad. Stabil., 67, 149 (2000)
  21. D’esposito L, Koenig JL, J. Polym. Sci. B: Polym. Phys., 14, 1731 (1976)
  22. Heino M, Kirjava J, Hietaoja P, Seppala J, J. Appl. Polym. Sci., 65(2), 241 (1997)
  23. Pawlak A, Perkins WG, Massey FL, Hiltner A, Baer E, J. Appl. Polym. Sci., 73(2), 203 (1999)
  24. Moad G, Prog. Polym. Sci, 24, 81 (1999)
  25. Dharmarajan N, Datta S, Strate GV, Ban L, Polymer, 36(20), 3849 (1995)