화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.6, 491-496, November, 2007
저점도 Bis-GMA 유도체로부터 제조된 고분자계 치과 수복용 복합재의 특성
Characteristics of Polymeric Dental Restorative Composites Fabricated from Bis-GMA Derivatives Having Low Viscosity
E-mail:
초록
고분자계 치아 수복용 복합재에서 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane(Bis-GMA) 70 wt%와 희석제인 triethylene glycol dimethacrylate(TEGDMA)가 30 wt% 포함된 혼합물이 레진 기질로 사용되고 있다. Bis-GMA의 높은 점도로 인해 첨가되는 TEGDMA는 수복재의 높은 경화 수축과 물성 저하의 원인이 된다. 본 연구에서는 TEGDMA 첨가량을 감소시켜 우수한 특성을 나타내는 수복재를 제조하기 위해 저점도 Bis-GMA 유도체들을 이용하여 새로운 치과용 수복재를 제조하였다. 히드록실기를 포함하지 않는 Bis-GMA 유도체들의 경화 특성은 Bis-GMA와 비슷하였지만 이들의 흡습성과 점도는 Bis-GMA에 비해 크게 낮았다. Bis-GMA 유도체를 포함한 수복재를 제조하여 경화 수축률, 흡습성, 기계적 물성을 실험한 결과 기존 상업적으로 사용되는 수복재보다 낮은 흡습성과 탁월한 물성을 나타내었고, 경화 수축률도 약 25% 감소하였다.
In the polymeric dental restorative composites, the resin matrix mainly contains 70 wt% 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA), as a base resin and 30 wt% triethylene glycol dimethacrylate (TEGDMA), as a diluent. Even though the viscosity of the resin matrix is rapidly decreased by adding TEGDMA, addition of TEGDMA to the Bis-GMA results in reduction in the mechanical properties and increase in the curing shrinkage of the dental composite. In order to fabricate dental composite exhibiting excellent properties by reducing TEGDMA content in the resin matrix, in this study, Bis-GMA derivatives, which do not contain hydroxyl groups, were used instead of Bis-GMA. The curing characteristics of Bis-GMA derivatives were similar with those of Bis-GMA, while the former exhibited lower viscosity and water absorption than the latter. Comparing the curing shrinkage of the dental composite containing Bis-GMA derivative with that prepared from Bis-GMA, the reduction in curing shrinkage was about 25%. Dental composites prepared from new resin matrices also exhibited low water uptake and better properties in mechanical strength.
  1. Donald M, Lorson DW, J. Am. Dent. Assoc., 92, 1189 (1976)
  2. Leonard DP, Ellse MC, J. Am. Dent. Assoc., 92, 1195 (1976)
  3. Osborne JW, Friedman SJ, J. Prosthet. Dent., 55, 335 (1986)
  4. Schoonover IC, Sounder W, J. Am. Dent. Assoc., 28, 1278 (1941)
  5. Pashley EL, Comer RW, Parry EE, Pashley DH, Oper. Dent., 16, 82 (1991)
  6. Staninec M, Holt M, J. Prosthet. Dent., 59, 397 (1988)
  7. Bowen RL, U.S. Patent 3,066,112 (1962)
  8. Luts F, Phillips RW, J. Prosthet. Dent., 50, 480 (1983)
  9. Sheela MS, Tamare K, Selvy L, J. Appl. Polym. Sci., 42, 561 (1991)
  10. Phillips RW, Science of Dental Materials, 8thed., Saunders, Philadelphia, Chap. 14 (1982)
  11. Shintani H, Inoue T, Yamaki M, Dent. Mater., 1, 124 (1985)
  12. Chung KH, J. Dent. Res., 69, 852 (1990)
  13. M.Sodewholm KJ, Zigan M, Ragan M, Fishschwiger W, Bergman M, J. Dent. Res., 63, 1248 (1984)
  14. Calais JG, Sodewholm KJM, J. Dent. Res., 67, 836 (1988)
  15. Soderholm KJM, Roberts KJ, J. Dent. Res., 69, 1812 (1990)
  16. Smith DC, Biomed. Mater., 12, 119 (1983)
  17. Browne M, Chaimberg Y, Cohen AJ, J. Appl. Polym. Sci., 44, 671 (1992)
  18. Kim Y, Lee J, Park K, Kim CK, Kim O, Polym.(Korea), 28(5), 426 (2004)
  19. Jang J, Kim SW, Polym.(Korea), 18(4), 584 (1994)
  20. Mateo JL, Bosch P, Lozano AE, Macromolecules, 27(26), 7794 (1994)
  21. Bailey WJ, Chou JL, Feng PZ, Issari B, Kuruganti V, Zhou LL, J. Macromol. Sci.-Chem., 25, 781 (1988)
  22. Kim O, Lee T, J. Korean Ind. Eng. Chem., 12(1), 65 (2001)
  23. Bourgeat-Lami E, Lang J, J. Colloid Interface Sci., 197(2), 293 (1998)
  24. Nystrom B, Kjoniksen A, Iversen C, Adv. Colloid Interface Sci., 79, 81 (1999)