화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.288, No.4, 921-926, 2001
5-aza-2'-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation
5-Aza-2'-deoxycytidine (5-azadC) is widely used as a potent inhibitor of DNA methyltransferase. Cells treated with this drug show various phenomena such as the reactivation of repressed genes, change in replication timing, and decondensation of heterochromatin. A number of studies using this drug have been reported so far but it is still controversial whether such changes are due to 5-azadC-induced demethylation itself or the side effects of the drug. Here we report that 5-azadC treatment induces histone hyperacetylation in mouse centromeric heterochromatin which normally contains methylated DNA and hypoacetylated histones. Treatment also affects the intranuclear distribution of histone deacetylase 2 (HDAC2). However, histone hyperacetylation was not observed in DNA methyltransferase 1-deficient cells with a reduced level of genomic DNA methylation. Our results suggest that 5-azadC-induced histone hyperacetylation is independent of DNA demethylation and that DNA methylation is not essential for the maintenance of the histone hypoacetylated state in centromeric heterochromatin.