화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.353, No.3, 750-755, 2007
Neuronal proteins involved in synaptic targeting of AMPA receptors in rat hippocampus by antidepressant drugs
Recent data suggest that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subtype plays a pivotal role in the pathogenesis of effective disorders and in the action of antidepressant drugs. After chronic treatment with the antidepressants desipramine or paroxetine, we measured by immunoprecipitation and Western blotting, the changes in the interaction of AMPA receptor subunits with proteins involved in trafficking and/or stabilization of the subunits into synaptic membranes of the hippocampus. Both antidepressants increased the interaction of GluR1 subunit with stargazin and of GluR2/3 with NSF. Paroxetine increased the interaction of GluR1 with Rab4A, and desipramine markedly increased the interaction of GluR1 with SAP97. Paroxetine, but not desipramine, also increased membrane levels of CaMKII, autophosphorylated CaMKII and GluR1 phosphorylated at the CaMKII site. Interactions of GluR1 and GluR2/3 with proteins implicated in AMPA receptor trafficking and with scaffolding proteins appear to account for the enhanced membrane expression of AMPA receptors in the hippocampus after antidepressant treatment. (c) 2006 Elsevier Inc. All rights reserved.