화학공학소재연구정보센터
Applied Surface Science, Vol.253, No.9, 4208-4214, 2007
Surface morphology of cellulose films prepared by spin coating on silicon oxide substrates pretreated with cationic polyelectrolyte
Flat cellulose films were prepared and morphologically modified by spin coating a cellulose/N-methylmorpholine-N-oxide/H2O solution onto silicon oxide substrates pre-coated with a cationic polyelectrolyte. Spin-coated cellulose films were allowed to stably form on the silicon oxide substrates by pretreatment with either polydiallyldimethylammonium chloride (PDADMAC) or polyvinylamine (PVAm). The film surfaces obtained were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). AFM topographical images of the cellulose film surfaces showed a different morphology depending on the underlying polymer, where PVAm pretreatment brought about an anisotropic surface topology. These results suggest that the specific attraction acting at the cellulose/polymer interface influences both the film formation and surface morphology of the cellulose layer. Differences in the solvent used to precipitate cellulose caused variations in the surface roughness by affecting the cellulose separation behavior. The morphological features of spin-coated cellulose film surfaces could be altered to some extent by these film preparation techniques. (c) 2006 Elsevier B.V. All rights reserved.